Development and progression of cancer cachexia: Perspectives from bench to bedside.

Sports Med Health Sci

Cachexia Research Laboratory, Exercise Science Research Center, Department of Human Health Performance and Recreation, University of Arkansas, 155 Stadium Dr, Fayetteville, AR, USA.

Published: December 2020

Cancer cachexia (CC) is a devastating syndrome characterized by weight loss, reduced fat mass and muscle mass that affects approximately 80% of cancer patients and is responsible for 22%-30% of cancer-associated deaths. Understanding underlying mechanisms for the development of CC are crucial to advance therapies to treat CC and improve cancer outcomes. CC is a multi-organ syndrome that results in extensive skeletal muscle and adipose tissue wasting; however, CC can impair other organs such as the liver, heart, brain, and bone as well. A considerable amount of CC research focuses on changes that occur within the muscle, but cancer-related impairments in other organ systems are understudied. Furthermore, metabolic changes in organ systems other than muscle may contribute to CC. Therefore, the purpose of this review is to address degenerative mechanisms which occur during CC from a whole-body perspective. Outlining the information known about metabolic changes that occur in response to cancer is necessary to develop and enhance therapies to treat CC. As much of the current evidences in CC are from pre-clinical models we should note the majority of the data reviewed here are from preclinical models.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8386816PMC
http://dx.doi.org/10.1016/j.smhs.2020.10.003DOI Listing

Publication Analysis

Top Keywords

cancer cachexia
8
therapies treat
8
changes occur
8
organ systems
8
metabolic changes
8
cancer
5
development progression
4
progression cancer
4
cachexia perspectives
4
perspectives bench
4

Similar Publications

Background: Sarcopenia is a condition characterized by inadequate muscle and function decline and is often associated with ageing and cancer. It is established that sarcopenia and muscle loss occurred during treatment are associated with the clinical outcomes of patients with cancer. This systematic review and meta-analysis aims to evaluate the association between sarcopenia at pretreatment and during treatment and overall survival or disease progression in patients with cervical cancer.

View Article and Find Full Text PDF

Pancreatic ductal adenocarcinoma (PDAC) is one of the worst solid malignancies in regard to outcomes and metabolic dysfunction leading to cachexia. It is alarming that PDAC incidence rates continue to increase and warrant the need for innovative approaches to combat this disease. Due to its relatively slow progression (10-20 years), prevention strategies represent an effective means to improve outcomes.

View Article and Find Full Text PDF

Cancer sarcopenia is highly prevalent in patients with advanced cancer, which is closely related to the disease prognosis. Overcoming cancer sarcopenia is important for cancer treatment. Cystine and theanine (CT), antioxidant amino acids, have been applied to the nutritional intervention of various diseases but their effects remain unclear on cancer sarcopenia.

View Article and Find Full Text PDF

Dihydroartemisinin ameliorates skeletal muscle atrophy in the lung cancer cachexia mouse model.

J Cancer Res Ther

December 2024

Department of Medical Ultrasound, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong, People's Republic of China.

Introduction: Cancer cachexia (CC) is characterized by weight loss with specifically reduced skeletal muscles and adipose tissues in patients with late-stage cancer. Dihydroartemisinin (DHA), an effective antimalarial derivative of artemisinin, has been demonstrated to have anti-inflammatory and antitumor properties.

Materials And Methods: This study examined the effects of DHA on the Lewis lung carcinoma (LLC)-induced CC mouse model.

View Article and Find Full Text PDF

Anamorelin, a highly selective ghrelin receptor agonist, enhances appetite and increases lean body mass in patients with cancer cachexia. However, the predictors of its therapeutic effectiveness are uncertain. This study aimed to investigate the association between the Glasgow prognostic score (GPS), used for classifying the severity of cancer cachexia, the therapeutic effectiveness of anamorelin, and the feasibility of early treatment based on cancer types.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!