Platelet P2Y Receptor Deletion or Pharmacological Inhibition does not Protect Mice from Sepsis or Septic Shock.

TH Open

Université de Strasbourg, INSERM, Etablissement Français du Sang (EFS)-Grand Est, BPPS UMR_S 1255, Fédération de Médecine Translationnelle de Strasbourg (FMTS), F-67000 Strasbourg, France.

Published: July 2021

 Platelets are increasingly appreciated as key effectors during sepsis, raising the question of the usefulness of antiplatelet drugs to treat patients with sepsis.  Evaluate the potential contribution of the platelet P2Y receptor in the pathogenesis of polymicrobial-induced sepsis and septic shock in mice.  The effects of P2Y inhibition using clopidogrel treatment and of platelet-specific deletion of the P2Y receptor in mice were examined in two severity grades of cecal ligation and puncture (CLP) leading to mild sepsis or septic shock.  Twenty hours after induction of the high grade CLP, clopidogrel- and vehicle-treated mice displayed a similar 30% decrease in mean arterial blood pressure (MAP) characteristic of shock. Septic shock-induced thrombocytopenia was not modified by clopidogrel treatment. Plasma concentrations of inflammatory cytokines and myeloperoxidase (MPO) were similarly increased in clopidogrel- and vehicle-treated mice, indicating comparable increase in systemic inflammation. Thrombin-antithrombin (TAT) complexes and the extent of organ damage were also similar. In mild-grade CLP, clopidogrel- and vehicle-treated mice did not display a significant decrease in MAP, while thrombocytopenia and plasma concentrations of TNFα, IL6, IL10, MPO, TAT and organ damage reached similar levels in both groups, although lower than those reached in the high grade CLP. Similarly, mice with platelet-specific deletion of the P2Y receptor were not protected from CLP-induced sepsis or septic shock.  The platelet P2Y receptor does not contribute to the pathogenesis of sepsis or septic shock in mice, suggesting that P2Y receptor antagonists may not be beneficial in patients with sepsis or septic shock.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8384481PMC
http://dx.doi.org/10.1055/s-0041-1733857DOI Listing

Publication Analysis

Top Keywords

p2y receptor
24
sepsis septic
24
septic shock
24
platelet p2y
12
clopidogrel- vehicle-treated
12
vehicle-treated mice
12
mice
8
sepsis
8
patients sepsis
8
shock mice
8

Similar Publications

Allergen-induced activation of epithelial P2Y receptors promotes ATP exocytosis and type 2 immunity in airways.

J Allergy Clin Immunol

January 2025

Departments of Animal Science, Integrative Biology and Physiology, University of Minnesota,St. Paul, MN, 55108. Electronic address:

Background: Environmental allergens induce the release of danger signals from the airway epithelium that trigger type 2 immune responses and promote airway inflammation.

Objective: To investigate the role of allergen-stimulated P2Y receptor activation in regulating ATP, IL-33 and DNA release by human bronchial epithelial (hBE) cells and mouse airways.

Methods: hBE cells were exposed to Alternaria alternata extract and secretion of ATP, IL-33 and DNA were studied in vitro.

View Article and Find Full Text PDF

Attributes novel drug candidate: Constitutive GPCR signal bias mediated by purinergic receptors.

Pharmacol Ther

January 2025

School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China; School of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, China.

G protein-coupled receptors (GPCRs) can transmit signals via G protein-dependent or independent pathways due to the conformational changes of receptors and ligands, which is called biased signaling. This concept posits that ligands can selectively activate a specific signaling pathway after receptor activation, facilitating downstream signaling along a preferred pathway. Biased agonism enables the development of ligands that prioritize therapeutic signaling pathways while mitigating on-target undesired effects.

View Article and Find Full Text PDF

Intra-abdominal sepsis is a life-threatening complex syndrome caused by microbes in the gut microbiota invading the peritoneal cavity. It is one of the major complications of intra-abdominal surgery. To date, only supportive therapies are available.

View Article and Find Full Text PDF

Purinergic inhibitory regulation of esophageal smooth muscle is mediated by P2Y receptors and ATP-dependent potassium channels in rats.

J Physiol Sci

January 2025

Department of Basic Veterinary Science, Laboratory of Physiology, Joint Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, 501-1193, Gifu, Japan; Department of Basic Veterinary Science, Laboratory of Physiology, Joint Department of Veterinary Medicine, Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, 501-1193, Gifu, Japan; Division of Animal Medical Science, Center for One Medicine Innovative Translational Research (COMIT), Gifu University Institute for Advanced Study, 1-1 Yanagido, 501-1193, Gifu, Japan.

Purines such as ATP are regulatory transmitters in motility of the gastrointestinal tract. The aims of this study were to propose functional roles of purinergic regulation of esophageal motility. An isolated segment of the rat esophagus was placed in an organ bath, and mechanical responses were recorded using a force transducer.

View Article and Find Full Text PDF

For almost two decades, dual antiplatelet therapy (DAPT) has been considered the cornerstone of pharmacological treatment in patients undergoing percutaneous coronary intervention (PCI). DAPT composition and duration have considerably evolved in the last decade moving from fixed treatment durations to tailored strategies based on the individual ischemic and bleeding risks. The increasing awareness of the prognostic relevance of bleeding events after PCI and the need for tailoring DAPT according to the individual bleeding and ischemic risks paved the way to newer DAPT modulation strategies by early aspirin withdrawal which have been shown to decrease bleeding without affecting therapeutic efficacy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!