Effect of pH on the denitrification proteome of the soil bacterium Paracoccus denitrificans PD1222.

Sci Rep

Departamento de Bioquímica y Biología Molecular, Universidad de Córdoba, Edificio Severo Ochoa, 1ª planta, Campus de Rabanales, 14071, Córdoba, Spain.

Published: August 2021

Denitrification is a respiratory process by which nitrate is reduced to dinitrogen. Incomplete denitrification results in the emission of the greenhouse gas nitrous oxide and this is potentiated in acidic soils, which display reduced denitrification rates and high NO/N ratios compared to alkaline soils. In this work, impact of pH on the proteome of the soil denitrifying bacterium Paracoccus denitrificans PD1222 was analysed with nitrate as sole energy and nitrogen source under anaerobic conditions at pH ranging from 6.5 to 7.5. Quantitative proteomic analysis revealed that the highest difference in protein representation was observed when the proteome at pH 6.5 was compared to the reference proteome at pH 7.2. However, this difference in the extracellular pH was not enough to produce modification of intracellular pH, which was maintained at 6.5 ± 0.1. The biosynthetic pathways of several cofactors relevant for denitrification and nitrogen assimilation like cobalamin, riboflavin, molybdopterin and nicotinamide were negatively affected at pH 6.5. In addition, peptide representation of reductases involved in nitrate assimilation and denitrification were reduced at pH 6.5. Data highlight the strong negative impact of pH on NosZ synthesis and intracellular copper content, thus impairing active NosZ assembly and, in turn, leading to elevated nitrous oxide emissions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8390676PMC
http://dx.doi.org/10.1038/s41598-021-96559-2DOI Listing

Publication Analysis

Top Keywords

proteome soil
8
bacterium paracoccus
8
paracoccus denitrificans
8
denitrificans pd1222
8
nitrous oxide
8
denitrification
6
denitrification proteome
4
soil bacterium
4
pd1222 denitrification
4
denitrification respiratory
4

Similar Publications

Comprehensive Genomic and Proteomic Analysis Identifies Effectors of f. sp. .

J Fungi (Basel)

November 2024

Institute of Vegetable, Zhejiang Academy of Agricultural Science, Hangzhou 310021, China.

wilt in eggplant caused by f. sp. is a major devastating soil-borne disease on a worldwide scale.

View Article and Find Full Text PDF

A Protocol to Disclose the Protein Fingerprint of Commercial White Wines Based on Proteomic Tools.

Methods Mol Biol

December 2024

Plant Proteomics and Functional Genomics Group, Department of Biochemistry and Molecular Biology and Soil and Agricultural Chemistry, Faculty of Science, University of Alicante, Alicante, Spain.

Proteins remaining in commercial wines are responsible for the protein haze in white wine unless they are effectively removed before bottling. To avoid this undesirable phenomenon, techniques of precipitation and filtration are applied in the white wine making process to eliminate a large part of them (fining processes) (Ribéreau-Gayon et al., Handbook of enology, vol 2, 3rd edn.

View Article and Find Full Text PDF

A Novel Membrane-Associated Protein Aids Bacterial Colonization of Maize.

ACS Synth Biol

December 2024

Department of Chemical and Biological Engineering, University of Wisconsin - Madison, Madison, Wisconsin 53706, United States.

The soil environment affected by plant roots and their exudates, termed the rhizosphere, significantly impacts crop health and is an attractive target for engineering desirable agricultural traits. Engineering microbes in the rhizosphere is one approach to improving crop yields that directly minimizes the number of genetic modifications made to plants. Soil microbes have the potential to assist with nutrient acquisition, heat tolerance, and drought response if they can persist in the rhizosphere in the correct numbers.

View Article and Find Full Text PDF

Therapeutic Potential of Prenylated Flavonoids of the Fabaceae Family in Medicinal Chemistry: An Updated Review.

Int J Mol Sci

December 2024

Plant Proteomics and Functional Genomics Group, Department of Biochemistry and Molecular Biology and Soil and Agricultural Chemistry, Faculty of Science, University of Alicante, Carretera San Vicente del Raspeig s/n, 03690 San Vicente del Raspeig, Alicante, Spain.

Much attention has been paid to the potential biological activities of prenylated flavonoids (PFs) in various plant families over the last decade. They have enormous potential for biological activities, such as anti-cancer, anti-diabetic, antimicrobial, anti-inflammatory, anti-Alzheimer's, and neuroprotective activities. Medicinal chemists have recently shown a strong interest in PFs, as they are critical to the development of new medicines.

View Article and Find Full Text PDF

The Current Status and Prospects of the Application of Omics Technology in the Study of .

Int J Mol Sci

November 2024

Institute of Forest Biotechnology, College of Forestry, Hebei Agricultural University, Baoding 071000, China.

Elm () species are important components of forest resources with significant ecological and economic value. As tall hardwood trees that are drought-resistant, poor-soil-tolerant, and highly adaptable, species are an excellent choice for ecologically protected forests and urban landscaping. Additionally, the bioactive substances identified in the fruits, leaves, bark, and roots of have potential applications in the food and medical fields and as raw materials in industrial and cosmetic applications.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!