The 21st century has seen an acceleration of anthropogenic climate change and biodiversity loss, with both stressors deemed to affect ecosystem functioning. However, we know little about the interactive effects of both stressors and in particular about the interaction of increased climatic variability and biodiversity loss on ecosystem functioning. This should be remedied because larger climatic variability is one of the main features of climate change. Here, we demonstrated that temperature fluctuations led to changes in the importance of biodiversity for ecosystem functioning. We used microcosm communities of different phytoplankton species richness and exposed them to a constant, mild, and severe temperature-fluctuating environment. Wider temperature fluctuations led to steeper biodiversity-ecosystem functioning slopes, meaning that species loss had a stronger negative effect on ecosystem functioning in more fluctuating environments. For severe temperature fluctuations, the slope increased through time due to a decrease of the productivity of species-poor communities over time. We developed a theoretical competition model to better understand our experimental results and showed that larger differences in thermal tolerances across species led to steeper biodiversity-ecosystem functioning slopes. Species-rich communities maintained their ecosystem functioning with increased fluctuation as they contained species able to resist the thermally fluctuating environments, while this was on average not the case in species-poor communities. Our results highlight the importance of biodiversity for maintaining ecosystem functions and services in the context of increased climatic variability under climate change.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8536371PMC
http://dx.doi.org/10.1073/pnas.2019591118DOI Listing

Publication Analysis

Top Keywords

ecosystem functioning
24
climate change
12
climatic variability
12
temperature fluctuations
12
biodiversity ecosystem
8
functioning
8
biodiversity loss
8
increased climatic
8
fluctuations led
8
led steeper
8

Similar Publications

Climate change aggravates bird mortality in pristine tropical forests.

Sci Adv

January 2025

Biological Dynamics of Forest Fragments Project, Instituto Nacional de Pesquisas da Amazônia (INPA), Manaus 69060-001, Amazonas, Brazil.

Stable understory microclimates within undisturbed rainforests are often considered refugia against climate change. However, this assumption contrasts with emerging evidence of Neotropical bird population declines in intact rainforests. We assessed the vulnerability of resident rainforest birds to climatic variability, focusing on dry season severity characterized by hotter temperatures and reduced rainfall.

View Article and Find Full Text PDF

Comparative analysis of antibiotic resistance genes between fresh pig manure and composted pig manure in winter, China.

PLoS One

January 2025

School of Environmental Engineering, Yellow River Conservancy Technical Institute, Kaifeng Key Laboratory of Food Composition and Quality Assessment, Kaifeng, China.

Antibiotic resistance is a critical global public health issue. The gut microbiome acts as a reservoir for numerous antibiotic resistance genes (ARGs), which influence both existing and future microbial populations within a community or ecosystem. However, the differences in ARG expression between fresh and composted feces remain poorly understood.

View Article and Find Full Text PDF

Background: To develop an effective vaccine against Plasmodium vivax, the most widely dispersed human malaria parasite, it is critical to understand how coinfections with other pathogens could impact malaria-specific immune response. A recent conceptual study proposed that Epstein-Barr virus (EBV), a highly prevalent human herpesvirus that establishes lifelong persistent infection, may influence P. vivax antibody responses.

View Article and Find Full Text PDF

Members of the phylum inhabit a wide range of ecosystems including soils. We analysed the global patterns of distribution and habitat preferences of various lineages across major ecosystems (soil, engineered, host-associated, marine, non-marine saline and alkaline and terrestrial non-soil ecosystems) in 248 559 publicly available metagenomic datasets. Classes , , and were highly ubiquitous and showed a clear preference to soil over non-soil habitats, while classes and showed preferences to non-soil habitats.

View Article and Find Full Text PDF

Microbiota in the gastrointestinal tract (GIT) consisting of the rumen and hindgut (the small intestine, cecum and colon) in dairy calves play a vital role in their growth and development. This review discusses the development of dairy calf intestinal microbiomes with an emphasis on the impact that husbandry and rearing management have on microbiome development, health and growth of pre-weaned dairy calves. The diversity and composition of the microbes that colonize the lower GIT (small and large intestine) can have a significant impact on the growth and development of the calf, through influence on nutrient metabolism, immune modulation, resistance or susceptibility to infection, production outputs and behaviour modification in adult life.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!