Xeroderma pigmentosum and acute myeloid leukemia: a case report.

J Med Case Rep

Hematology and Oncology Pediatric Department, Hospital August 20, 1953, 6 Rue Lahcen Al Arjoun, Casablanca, Morocco.

Published: August 2021

AI Article Synopsis

  • Xeroderma pigmentosum is a rare genetic condition causing extreme sensitivity to UV rays, leading to skin cancer and sometimes neurological issues, with infrequent associations to other cancers like acute myeloblastic leukemia.
  • A case involved a 26-year-old Moroccan woman with xeroderma pigmentosum who developed acute myeloblastic leukemia and was treated with low-dose chemotherapy, but unfortunately, she died due to complications related to her condition.
  • This case highlights the need for more research on managing cancer in patients with xeroderma pigmentosum, as current treatment strategies remain challenging and poorly understood.

Article Abstract

Background: Xeroderma pigmentosum is a rare inherited disease characterized by extreme hypersensitivity to ultraviolet rays and predisposing to cutaneous malignancies that can appear in childhood. These manifestations are often associated with ocular lesions and sometimes with neurological disorders. The association of xeroderma pigmentosum with internal neoplasms such as acute myeloblastic leukemia is not reported with great frequency, which confirms the rarity of this occurrence.

Case Report: A 26-year-old Moroccan women, xeroderma pigmentosum patient, was diagnosed with acute myeloblastic leukemia with a complex karyotype. Due to the adverse risk of the xeroderma pigmentosum association with acute myeloblastic leukemia and the profile of acute myeloblastic leukemia with complex karyotype and monosomy 7, which constitute factors of poor prognosis, as well as the absence of studies conceding the tolerance of the chemotherapy by patients suffering from xeroderma pigmentosum, our patient was put under low-dose cytarabine protocol with granulocyte colony-stimulating factor. Unfortunately, she died on the tenth day of chemotherapy by acute pulmonary edema of cardiogenic pace complicated by tamponade.

Conclusion: According to reports, it is the second case showing association of xeroderma pigmentosum with acute myeloblastic leukemia. The management of these patients remains a challenge. Studies focusing on xeroderma pigmentosum patients developing hematological malignancies are necessary to better understand the most appropriate strategies and precautions for this specific case.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8390231PMC
http://dx.doi.org/10.1186/s13256-021-02969-1DOI Listing

Publication Analysis

Top Keywords

xeroderma pigmentosum
32
acute myeloblastic
20
myeloblastic leukemia
20
xeroderma
8
pigmentosum acute
8
association xeroderma
8
pigmentosum patient
8
leukemia complex
8
complex karyotype
8
acute
7

Similar Publications

Background/objective: Ultraviolet (UV) B radiation leads to DNA damage by generating cyclobutane pyrimidine dimers (CPDs). UVB-induced CPDs can also result in immune suppression, which is a major risk factor for non-melanoma skin cancer (NMSC). UVB-induced CPDs are repaired by nucleotide repair mechanisms (NER) mediated by xeroderma pigmentosum complementation group A (XPA).

View Article and Find Full Text PDF

Beyond Nucleotide Excision Repair: The Importance of XPF in Base Excision Repair and Its Impact on Cancer, Inflammation, and Aging.

Int J Mol Sci

December 2024

Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057, USA.

DNA repair involves various intricate pathways that work together to maintain genome integrity. XPF (ERCC4) is a structural endonuclease that forms a heterodimer with ERCC1 that is critical in both single-strand break repair (SSBR) and double-strand break repair (DSBR). Although the mechanistic function of ERCC1/XPF has been established in nucleotide excision repair (NER), its role in long-patch base excision repair (BER) has recently been discovered through the 5'-Gap pathway.

View Article and Find Full Text PDF

Unveiling Secondary Mutations in Blended Phenotypes: Dual ERCC4 and OTOA Pathogenic Variants Through WES Analysis.

Int J Mol Sci

December 2024

Department of Biomedical and Biotechnological Sciences, Section of Clinical Biochemistry and Medical Genetics, University of Catania, via Santa Sofia, 95123 Catania, Italy.

This study describes two siblings from consanguineous parents who exhibit intellectual disability, microcephaly, photosensitivity, bilateral sensorineural hearing loss, numerous freckles, and other clinical features that suggest a potential disruption of the nucleotide excision repair (NER) pathway. Whole exome sequencing (WES) identified a novel homozygous missense variant in the gene, which was predicted to be pathogenic. However, a subsequent peculiar audiometric finding prompted further investigation, revealing a homozygous deletion in the gene linked to neurosensorial hearing loss.

View Article and Find Full Text PDF

Background: Platinum chemotherapy (CT) remains the backbone of systemic therapy for patients with small-cell lung cancer (SCLC). The nucleotide excision repair (NER) pathway plays a central role in the repair of the DNA damage exerted by platinum agents. Alteration in this repair mechanism may affect patients' survival.

View Article and Find Full Text PDF

Thirteen children with xeroderma pigmentosum variant C were evaluated using the Dermoscopic Photoaging Assessment Scale (DPAS), the Glogau scale, and the Sun Protection Behavior Scale (SPBS). Most patients exhibited signs of epidermal photoaging, with pigmentary and vascular changes and poor sun protection behavior (mean SPBS score: 18.92 ± 5.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!