Background: Biodiesel is an eco-friendly and renewable energy source and a valuable substitute for petro-diesel. Sago processing wastewater (SWW), a by-product of the cassava processing industry, has starch content ranging from 4 to 7 g L and serves as an outstanding source for producing microbial lipids by the oleaginous microorganisms. In the present study, Candida tropicalis ASY2 was employed to optimize single-cell oil (SCO) production using SWW and subsequent transesterification by response surface methodology. Variables such as starch content, yeast extract, airflow rate, pH, and temperature significantly influenced lipid production in a preliminary study. The lipid production was scaled up to 5 L capacity airlift bioreactor and its optimization was done by response surface methodology. The dried yeast biomass obtained under optimized conditions from 5 L bioreactor was subjected to a direct transesterification process. Biomass: methanol ratio, catalyst concentration, and time were the variables used to attain higher FAME yield in the transesterification optimization process.
Results: Under optimized conditions, the highest lipid yield of 2.68 g L was obtained with 15.33 g L of starch content, 0.5 g L of yeast extract, and 5.992 L min of airflow rate in a bioreactor. The optimized direct transesterification process yielded a higher FAME yield of 86.56% at 1:20 biomass: methanol ratio, 0.4 M catalyst concentration, and a time of 6.85 h.
Conclusions: Thus, this optimized process rendered the microbial lipids derived from C. tropicalis ASY2 as potentially alternative oil substitutes for sustainable biodiesel production to meet the rising energy demands.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8394618 | PMC |
http://dx.doi.org/10.1186/s12934-021-01655-7 | DOI Listing |
BMC Microbiol
December 2024
College of Agriculture and Forestry, Linyi University, Linyi, 276005, Shandong, China.
Avian pathogenic Escherichia coli (APEC) is a significant pathogen infecting poultry that is responsible for high mortality, morbidity and severe economic losses to the poultry industry globally, posing a substantial risk to the health of poultry. APEC encounters reactive oxygen species (ROS) during the infection process and thus has evolved antioxidant defense mechanisms to protect against oxidative damage. The imbalance of ROS production and antioxidant defenses is known as oxidative stress, which results in oxidative damage to proteins, lipids and DNA, and even bacterial cell death.
View Article and Find Full Text PDFVet Clin North Am Small Anim Pract
December 2024
College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, 408 Raymond Stotzer Parkway, College Station, TX 77845, USA. Electronic address:
Alterations in the lipid layer and intercellular corneocyte connections can lead to increased allergen penetration through the skin surface. A normal cutaneous microbiome keeps the opportunistic pathogen Staphylococcus pseudintermedius levels low, but allergic inflammation leads to decreased diversity and increase in S pseudintermedius. Keratinocytes sound the initial allergen alarm via cytokine signaling and promote T-helper 2 (Th-2) inflammation.
View Article and Find Full Text PDFAm J Cardiol
December 2024
Università degli Studi di Enna "Kore", Enna, Italy; Division of Cardiology, Ospedale Umberto I, ASP 4 di Enna, Enna, Italy. Electronic address:
Atherosclerotic cardiovascular disease (ASCVD) is a leading cause of morbidity and mortality globally, significantly influenced by modifiable risk factors, particularly hypercholesterolemia. Despite the availability of effective lipid-lowering drugs, achieving the low-density lipoprotein cholesterol (LDL-C) target levels remains a significant challenge in clinical practice, contributing to persistent high rates of cardiovascular events. The intEgrated multidiscipliNary pathway for large-scale maNagement of dyslipidemiA in high-risk patients (ENNA) Project was designed to address the alarming rates of suboptimal lipid management among high and very-high risk patients in the Province of Enna, Sicily.
View Article and Find Full Text PDFBiochem Biophys Res Commun
December 2024
Department of Gastroenterology, Juntendo University School of Medicine, Tokyo, Japan.
Lipid rafts are subdomains of the cell membrane that are rich in cholesterol and glycolipids, and they are involved in various cellular processes and pathophysiological mechanisms. However, the specific role of lipid rafts in hepatocyte dysfunction during the pathogenesis of metabolic dysfunction-associated steatotic liver disease (MASLD) is not fully understood. In this study, we investigated the impact of lipid rafts on insulin sensitivity and hepatocyte injury induced by saturated free fatty acids (sFFAs) using primary-cultured mouse hepatocytes.
View Article and Find Full Text PDFInt Immunopharmacol
December 2024
Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados del IPN, Unidad Sede Sur, Calzada de los Tenorios No. 235, Col. Granjas Coapa, Tlalpan, CP 14330 Mexico City, Mexico; Centro de Investigación sobre el Envejecimiento, Centro de Investigación y de Estudios Avanzados del IPN, Unidad Sede Sur, Calzada de los Tenorios No. 235, Col. Granjas Coapa, Tlalpan, CP 14330 Mexico City, Mexico. Electronic address:
Mast cells (MC) are crucial effectors in immediate allergic reactions. Monomeric IgE sensitizes MC and triggers various signaling responses. FcεRI/IgE/antigen crosslinking induces the release of several mediators, including bioactive lipids, but little is known about endocannabinoids (eCBs) secretion.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!