Introduction: The possibility of surface transmission in hospitals with high density of COVID- 19 patients is unneglectable. The aim of this study is to determine the extent of surface contamination in coronavirus central hospital of Ilam province in western Iran.

Materials And Methods: In this experimental study, 205 samples were taken from environmental surfaces in hospital. SARS-CoV-2 RNA detected by Real-time RT-PCR.

Results: 121 out of 205 (50.02%) samples were positive. The most contaminated objects were toilet sites (5/5,100% ICU; 5/5, 100% isolation wards).

Conclusion: High surface contamination with SARS-CoV-2 proposes the surface as a potential route of transmission.

Download full-text PDF

Source
http://dx.doi.org/10.1080/00185868.2021.1969870DOI Listing

Publication Analysis

Top Keywords

surface contamination
12
contamination sars-cov-2
8
environmental surface
4
sars-cov-2 toilets
4
toilets contaminated
4
contaminated surfaces
4
surfaces covid-19
4
covid-19 referral
4
referral hospital
4
hospital introduction
4

Similar Publications

Widespread geogenic uranium (U) contamination of Indian groundwaters is of serious concern; yet little is known of the dominant forms and release mechanisms of U in these aquifers. Interestingly, manganese (Mn)-rich aquifers, highly buffered by dissolved inorganic carbon (DIC) and saturated with rhodochrosite [MnCO], have shown low U ( View Article and Find Full Text PDF

There are three components to every environmental protection system: monitoring, estimation, and control. One of the main toxic gases with considerable effects on human health is NO, which is released into the atmosphere by industrial activities and the transportation network. In the present research, a NO sensor is designed based on FeO piperidine-4-sulfonic acid grafted onto a reduced graphene oxide FeO@rGO-N-(piperidine-4-SOH) nanocomposite, due to the highly efficient detection of pollution in the air.

View Article and Find Full Text PDF

A Review Study on Molecularly Imprinting Surface Plasmon Resonance Sensors for Food Analysis.

Biosensors (Basel)

November 2024

Department of Nutrition and Dietetics, Faculty of Health Sciences, Hasan Kalyoncu University, Gaziantep 27000, Turkey.

Surface plasmon resonance (SPR) sensors have emerged as a powerful tool in biosensing applications due to their ability to provide sensitive and real-time detection of chemical and biological analytes. This review focuses on the development and application of molecularly imprinted polymer (MIP)-based SPR sensors for food analysis. By combining the high selectivity of molecular imprinting techniques with the sensitivity of SPR, these sensors offer significant advantages in detecting food contaminants and other target molecules.

View Article and Find Full Text PDF

The COVID-19 pandemic highlighted the urgent need for effective surface disinfection solutions, which has led to the use of mobile robots equipped with ultraviolet (UVC) lamps as a promising technology. This study aims to optimize the navigation of differential mobile robots equipped with UVC lamps to ensure maximum efficiency in disinfecting complex environments. Bio-inspired metaheuristic algorithms such as the gazelle optimization algorithm, whale optimization algorithm, bat optimization algorithm, and particle swarm optimization are applied.

View Article and Find Full Text PDF

Environmentally friendly nanoporous gels are tailor-designed and employed in the adsorption of toxic organic pollutants in wastewater. To ensure the maximum adsorption of the contaminant molecules by the gels, molecular modeling techniques were used to evaluate the binding affinity between the toxic organic contaminants such as methylene blue (MB) and Congo red (CR) and various biopolymers. To generate nanopores in the matrix of the polymeric gels, salt crystals were used as porogen.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!