Microwave-assisted phospha-Michael addition reactions were carried out in the 13α-oestrone series. The exocyclic 16-methylene-17-ketones as α,β-unsaturated ketones were reacted with secondary phosphine oxides as nucleophilic partners. The addition reactions furnished the two tertiary phosphine oxide diastereomers in high yields. The main product was the 16α-isomer. The antiproliferative activities of the newly synthesised organophosphorus compounds against a panel of nine human cancer cell lines were investigated by means of MTT assays. The most potent compound, the diphenylphosphine oxide derivative in the 3--methyl-13α-oestrone series (), exerted selective cell growth-inhibitory activity against UPCI-SCC-131 and T47D cell lines with low micromolar IC values. Moreover, it displayed good tumour selectivity property determined against non-cancerous mouse fibroblast cells.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8405091PMC
http://dx.doi.org/10.1080/14756366.2021.1963241DOI Listing

Publication Analysis

Top Keywords

addition reactions
12
microwave-assisted phospha-michael
8
phospha-michael addition
8
13α-oestrone series
8
cell lines
8
reactions 13α-oestrone
4
series antiproliferative
4
antiproliferative properties
4
properties microwave-assisted
4
reactions carried
4

Similar Publications

Progressive multifocal leukoencephalopathy (PML) is a demyelinating disease caused by the JC polyomavirus (JCPyV). Based on the clinical criteria, PML is diagnosed via polymerase chain reaction (PCR) detection of JCPyV DNA in cerebrospinal fluid (CSF) in combination with neurological and imaging findings. Although the utility of CSF JCPyV testing using ultrasensitive PCR assays has been suggested, its potential requires further evaluation.

View Article and Find Full Text PDF

UBL5 and Its Role in Viral Infections.

Viruses

December 2024

Key Laboratory of Biosafety Defense (Naval Medical University), Ministry of Education, Naval Medical University (Second Military Medical University), Shanghai 200433, China.

Unlike other ubiquitin-like family members, UBL5 is structurally and functionally atypical, and a novel role in various biological processes and diseases has been discovered. UBL5 can stabilize the structure of the spliceosome, can promote post-transcriptional processing, and has been implicated in both DNA damage repair and protein unfolding reactions, as well as cellular mechanisms that are frequently exploited by viruses for their own proliferation during viral infections. In addition, UBL5 can inhibit viral infection by binding to the non-structural protein 3 of rice stripe virus and mediating its degradation.

View Article and Find Full Text PDF

This study evaluated influenza A virus (IAV) detection and genetic diversity over time, specifically at the human-swine interface in breeding and nursery farms. Active surveillance was performed monthly in five swine farms in the Midwest United States targeting the employees, the prewean piglets at sow farms, and the same cohort of piglets in downstream nurseries. In addition, information was collected at enrollment for each employee and farm to assess production management practices, IAV vaccination status, diagnostic procedures, and biosecurity.

View Article and Find Full Text PDF

Establishment of a New Real-Time Molecular Assay for the Detection of Babanki Virus in Africa.

Viruses

November 2024

Virology Department, Institut Pasteur de Dakar, 36 Avenue Pasteur, Dakar 220, Senegal.

Babanki virus is a subtype of the Sindbis virus, a widespread arthropod-borne alphavirus circulating in Eurasia, Africa, and Oceania. Characterized by rashes and arthritis, clinical infections due to Sindbis were mainly reported in Africa, Australia, Asia, and Europe. However, its sub-type, Babanki virus, was reported in Northern Europe and Africa, where its epidemiology potential remains poorly understood.

View Article and Find Full Text PDF

Challenges of BTV-Group Specific Serology Testing: No One Test Fits All.

Viruses

November 2024

The Commonwealth Scientific and Industrial Research Organisation (CSIRO), Australian Animal Health Laboratory, Australian Centre for Disease Preparedness, 5 Portarlington Road, East Geelong, VIC 3219, Australia.

A newly formatted enzyme-linked immunosorbent assay (ELISA) for the detection of antibodies to bluetongue virus (BTV) was developed and validated for bovine and ovine sera and plasma. Validation of the new sandwich ELISA (sELISA) was achieved with 949 negative bovine and ovine sera from BTV endemic and non-endemic areas of Australia and 752 BTV positive (field and experimental) sera verified by VNT and/or PCR. The test diagnostic sensitivity (DSe) and diagnostic specificity (DSp) were 99.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!