Multiple myeloma (MM) is a hematological cancer in which relapse and resistance are highly frequent. Therefore, alternatives to conventional treatments are necessary. Withaferin A, a withanolide isolated from , has previously shown promising activity against various MM models. In the present study, structure-activity relationships (SARs) were evaluated using 56 withanolides. The antiproliferative activity was assessed in three MM cell lines and in a 3D MM coculture model to understand the in vitro activity of compounds in models of various complexity. While the results obtained in 2D allowed a quick and simple evaluation of cytotoxicity used for a first selection, the use of the 3D MM coculture model allowed filtering compounds that perform better in a more complex setup. This study shows the importance of the last model as a bridge between 2D and in vivo studies to select the most active compounds and ultimately lead to a reduction of animal use for more sustained in vivo studies. NF-κB inhibition was determined to evaluate if this could be one of the targeted pathways. The most active compounds, withanolide D () and , should be further evaluated in vivo.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jnatprod.1c00446DOI Listing

Publication Analysis

Top Keywords

coculture model
12
structure-activity relationships
8
withanolides antiproliferative
8
multiple myeloma
8
activity models
8
vivo studies
8
active compounds
8
relationships withanolides
4
antiproliferative agents
4
agents multiple
4

Similar Publications

Cancer-associated fibroblasts (CAFs) are a crucial component in the tumor microenvironment (TME) of peritoneal metastasis (PM), where they contribute to tumor progression and metastasis via secretion of interleukin-6 (IL-6). Here, we investigated the role of IL-6 in PM of gastric cancer (GC) and assessed whether anti-IL-6 receptor antibody (anti-IL-6R Ab) could inhibit PM of GC. We conducted immunohistochemical analysis of IL-6 and α-smooth muscle (α-SMA) expressions in clinical samples of GC and PM, and investigated the interactions between CAFs and GC cells in vitro.

View Article and Find Full Text PDF

Chronic lymphocytic leukemia is a malignant lymphoproliferative disorder for which primary or acquired drug resistance represents a major challenge. To investigate the underlying molecular mechanisms, we generate a mouse model of ibrutinib resistance, in which, after initial treatment response, relapse under therapy occurrs with an aggressive outgrowth of malignant cells, resembling observations in patients. A comparative analysis of exome, transcriptome and proteome of sorted leukemic murine cells during treatment and after relapse suggests alterations in the proteasome activity as a driver of ibrutinib resistance.

View Article and Find Full Text PDF

The neuromuscular junction (NMJ) is essential for transmitting signals from motor neurons (MNs) to skeletal muscles (SKMs), and its dysfunction can lead to severe motor disorders. However, our understanding of the NMJ is limited by the absence of accurate human models. Although human induced pluripotent stem cell (iPSC)-derived models have advanced NMJ research, their application is constrained by challenges such as limited differentiation efficiency, lengthy generation times, and cryopreservation difficulties.

View Article and Find Full Text PDF

Synergistic effects of mTOR inhibitors with VEGFR3 inhibitors on the interaction between TSC2-mutated cells and lymphatic endothelial cells.

Sci China Life Sci

January 2025

Department of Pulmonary and Critical Care Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China.

Lymphangioleiomyomatosis (LAM) is a rare neoplastic disease affecting the lung, kidney, and lymphatic system with a molecular mechanism of tuberous sclerosis complex 2 (TSC2) mutations. Vascular endothelial growth factor D (VEGF-D), a ligand for vascular endothelial growth factor receptor 3 (VEGFR3), is a diagnostic biomarker of LAM and is associated with lymphatic circulation abnormalities. This study explored the interaction between LAM cells and lymphatic endothelial cells (LECs) and the effects of rapamycin on this interaction, which may help to identify new targets for LAM treatment.

View Article and Find Full Text PDF

Background: Thyroid Hormones (THs) critically impact human cancer. Although endowed with both tumor-promoting and inhibiting effects in different cancer types, excess of THs has been linked to enhanced tumor growth and progression. Breast cancer depends on the interaction between bulk tumor cells and the surrounding microenvironment in which mesenchymal stem cells (MSCs) exert powerful pro-tumorigenic activities.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!