Involvement of Alarmins in the Pathogenesis and Progression of Multiple Myeloma.

Int J Mol Sci

Department of Clinical and Experimental Medicine, School and Operative Unit of Allergy and Clinical Immunology, University of Messina, 98125 Messina, Italy.

Published: August 2021

Objective: Multiple Myeloma (MM) is a haematological disease resulting from the neoplastic transformation of plasma cells. The uncontrolled growth of plasma cells in the bone marrow and the delivery of several cytokines causes bone erosion that often does not regress, even in the event of disease remission. MM is characterised by a multi-step evolutionary path, which starts with an early asymptomatic stage defined as monoclonal gammopathy of undetermined significance (MGUS) evolving to overt disease.

Data Sources And Study Selection: We have selected scientific publications on the specific topics "alarmis, MGUS, and MM", drawing from PubMed. The keywords we used were alarmines, MGUS, MM, and immune system.

Results: The analysis confirms the pivotal role of molecules such as high-mobility group box-1, heat shock proteins, and S100 proteins in the induction of neoangiogenesis, which represents a milestone in the negative evolution of MM as well as other haematological and non-haematological tumours.

Conclusions: Modulation of the host immune system and the inhibition of neoangiogenesis may represent the therapeutic target for the treatment of MM that is capable of promoting better survival and reducing the risk of RRMM.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8396675PMC
http://dx.doi.org/10.3390/ijms22169039DOI Listing

Publication Analysis

Top Keywords

multiple myeloma
8
plasma cells
8
involvement alarmins
4
alarmins pathogenesis
4
pathogenesis progression
4
progression multiple
4
myeloma objective
4
objective multiple
4
myeloma haematological
4
haematological disease
4

Similar Publications

Background: The prognosis of a plasma cell neoplasm (PCN) varies depending on the presence of genetic abnormalities. However, detecting sensitive genetic mutations poses challenges due to the heterogeneous nature of the cell population in bone marrow aspiration. The established gold standard for cell sorting is fluorescence-activated cell sorting (FACS), which is associated with lengthy processing times, substantial cell quantities, and expensive equipment.

View Article and Find Full Text PDF

Background: High dose chemotherapy and autologous stem cell transplantation (HDT/ASCT) remains the preferred first line consolidation strategy for newly diagnosed multiple myeloma (MM). However, The role of HDT/ASCT in first relapse is uncertain in the context of novel therapies. This study evaluates real-world outcomes of MM patients in first relapse, focusing on the role of consolidative HDT/ASCT.

View Article and Find Full Text PDF

Ligand-based cheminformatics and free energy-inspired molecular simulations for prioritizing and optimizing G-protein coupled receptor kinase-6 (GRK6) inhibitors in multiple myeloma treatment.

Comput Biol Chem

January 2025

Drug Discovery and Development Laboratory (DDD Lab), Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India. Electronic address:

Multiple myeloma (MM) is the second most frequently diagnosed hematological malignancy, presenting limited treatment options with no curative potential and significant drug resistance. Recent studies involving genetic knockdown established the crucial role of GRK6 in upholding the viability of MM cells, emphasizing the need to identify potential inhibitors. Computational exploration of GRK6 inhibitors has not been attempted previously.

View Article and Find Full Text PDF

Synthesis and functional screening of novel inhibitors targeting the HDAC6 zinc finger ubiquitin-binding domain.

Eur J Med Chem

December 2024

SynBioC Research Group, Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium. Electronic address:

Histone deacetylase 6 (HDAC6) is a promising target for treating neurodegenerative disorders, several cancer types and viral infections. Unique among HDACs, the HDAC6 isoform possesses a zinc finger ubiquitin-binding domain (UBD) crucial for managing misfolded protein aggregates and facilitating viral infection. HDAC6 binds aggregated polyubiquitinated proteins through its UBD, mediating their transport to the aggresome and subsequent removal via autophagy.

View Article and Find Full Text PDF

Tissue factor-bearing extracellular vesicles, procoagulant phospholipids and D-dimer as potential biomarkers for venous thromboembolism in patients with newly diagnosed multiple myeloma: A comprehensive analysis.

Thromb Res

January 2025

Clinical Investigation Center CIC-EC 1408, University Hospital of Saint-Etienne, France; SAINBIOSE, UMR 1059, INSERM, Jean Monnet University, Saint-Etienne, France; Division of Clinical Hematology, University Hospital of Saint-Etienne, France. Electronic address:

Background: Candidate biomarkers to improve venous thromboembolism (VTE) risk prediction in patients with newly diagnosed multiple myeloma (MM) undergoing anti-myeloma therapy include tissue factor-bearing microvesicles (MV-TF), procoagulant phospholipids (procoag-PPL), and D-dimer.

Objective: We aimed to determine the levels of MV-TF, procoag-PPL, and D-dimer at baseline and during initial anti-myeloma therapy and their association with the risk of VTE.

Methods: This prospective, longitudinal, observational study included 71 patients with newly diagnosed MM who were eligible for anti-myeloma therapy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!