The eye has been used extensively to study numerous aspects of biological systems, for example, spatio-temporal regulation of differentiation, visual signal transduction, protein trafficking and neurodegeneration. Right from the advent of fluorescent proteins (FPs) near the end of the millennium, heterologously expressed fusion proteins comprising FPs have been applied in vision research not only for subcellular localization of proteins but also for genetic screens and analysis of photoreceptor function. Here, we summarize applications for FPs used in the eye as part of genetic screens, to study rhodopsin expression patterns, subcellular protein localization, membrane protein transport or as genetically encoded biosensors for Ca and phospholipids in vivo. We also discuss recently developed FPs that are suitable for super-resolution or correlative light and electron microscopy (CLEM) approaches. Illustrating the possibilities provided by using FPs in photoreceptors may aid research in other sensory or neuronal systems that have not yet been studied as well as the eye.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8396179 | PMC |
http://dx.doi.org/10.3390/ijms22168930 | DOI Listing |
Front Biosci (Landmark Ed)
January 2025
Department of Neurology, Jinshan Hospital, Fudan University, 201508 Shanghai, China.
Background: Neuronal cholesterol deficiency may contribute to the synaptopathy observed in Alzheimer's disease (AD). However, the underlying mechanisms remain poorly understood. Intact synaptic vesicle (SV) mobility is crucial for normal synaptic function, whereas disrupted SV mobility can trigger the synaptopathy associated with AD.
View Article and Find Full Text PDFFront Biosci (Landmark Ed)
January 2025
Department of Cardiovascular Medicine, Binzhou Medical University Hospital, 256603 Binzhou, Shandong, China.
Background: Cellular vacuolization is a commonly observed phenomenon under physiological and pathological conditions. However, the mechanisms underlying vacuole formation remain largely unresolved.
Methods: LysoTracker Deep Red probes and Enhanced Green Fluorescent Protein-tagged light chain 3B (LC3B) plasmids were employed to differentiate the types of massive vacuoles.
Viruses
December 2024
School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China.
De novo synthesis of phage genomes enables flexible genome modification and simplification. This study explores the synthetic genome assembly of phage vB_PaeS_SCUT-S4 (S4), a 42,932 bp headful packaging phage, which encapsidates a terminally redundant, double-stranded DNA genome exceeding unit length. We demonstrate that using the yeast TAR approach, the S4 genome can be assembled and rebooted from a unit-length genome plus a minimal 60 bp terminal redundant sequence.
View Article and Find Full Text PDFViruses
December 2024
Department of Microbiology and Immunology, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand.
Influenza A virus (IAV) remains a pandemic threat. Particularly, the evolution and increased interspecies and intercontinental transmission of avian IAV H5N1 subtype highlight the importance of continuously studying the IAV and identifying the determinants of its pathogenesis. Host innate antiviral response is the first line of defense against IAV infection, and the transcription factor, the signal transducer and activator of transcription 3 (STAT3), has emerged as a critical component of this response.
View Article and Find Full Text PDFViruses
December 2024
School of Veterinary Medicine, Xinjiang Agricultural University, Urumqi 830052, China.
Canids act as a crucial intermediary in the transmission of rabies and , serving as co-infection hosts and pathogen carriers for both rabies and hydatid disease (HD) transmitted from animals to humans. Therefore, an effective and efficient bivalent oral vaccine for preventing HD and rabies is urgently required to reduce economic losses in husbandry resulting from rabies and HD. In this study, a full-length plasmid (pcDNA4-NPM+G+EgM123+eGFP+L) carrying the gene and fluorescence reporter genes of eGFP and four auxiliary transfection plasmids of rabies virus SRV (pcDNA4-N, pcDNA4-P, pcDNA4-G, pcDNA-L) were established by reverse genetics approaches and co-transfected to BSR cells by electrotransfection.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!