Increasing evidence suggests that systemic inflammation triggers a neuroinflammatory response that involves sustained microglia activation. This response has deleterious consequences on memory and learning capability in experimental animal models and in patients. However, the mechanisms connecting systemic inflammation and microglia activation remain poorly understood. Here, we identify the autotaxin (ATX)/lysophosphatidic acid (LPA)/LPA-receptor axis as a potential pharmacological target to modulate the LPS-mediated neuroinflammatory response in vitro (the murine BV-2 microglia cell line) and in vivo (C57BL/6J mice receiving a single i.p. LPS injection). In LPS-stimulated (20 ng/mL) BV-2 cells, we observed increased phosphorylation of transcription factors (STAT1, p65, and c-Jun) that are known to induce a proinflammatory microglia phenotype. LPS upregulated ATX, TLR4, and COX2 expression, amplified NO production, increased neurotoxicity of microglia conditioned medium, and augmented cyto-/chemokine concentrations in the cellular supernatants. PF8380 (a type I ATX inhibitor, used at 10 and 1 µM) and AS2717638 (an LPA5 antagonist, used at 1 and 0.1 µM) attenuated these proinflammatory responses, at non-toxic concentrations, in BV-2 cells. In vivo, we demonstrate accumulation of PF8380 in the mouse brain and an accompanying decrease in LPA concentrations. In vivo, co-injection of LPS (5 mg/kg body weight) and PF8380 (30 mg/kg body weight), or LPS/AS2717638 (10 mg/kg body weight), significantly attenuated LPS-induced iNOS, TNFα, IL-1β, IL-6, and CXCL2 mRNA expression in the mouse brain. On the protein level, PF8380 and AS2717638 significantly reduced TLR4, Iba1, GFAP and COX2 expression, as compared to LPS-only injected animals. In terms of the communication between systemic inflammation and neuroinflammation, both inhibitors significantly attenuated LPS-mediated systemic TNFα and IL-6 synthesis, while IL-1β was only reduced by PF8380. Inhibition of ATX and LPA5 may thus provide an opportunity to protect the brain from the toxic effects that are provoked by systemic endotoxemia.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8395174PMC
http://dx.doi.org/10.3390/ijms22168519DOI Listing

Publication Analysis

Top Keywords

systemic inflammation
12
mg/kg body
12
body weight
12
bv-2 microglia
8
neuroinflammatory response
8
microglia activation
8
bv-2 cells
8
cox2 expression
8
mouse brain
8
microglia
6

Similar Publications

Introduction: Since the dawn of the new millennium, Candida species have been increasingly implicated as a cause of both healthcare-associated as well as opportunistic yeast infections, due to the widespread use of indwelling medical devices, total parenteral nutrition, systemic corticosteroids, cytotoxic chemotherapy, and broad-spectrum antibiotics. Candida tropicalis is a pathogenic Candida species associated with considerable morbidity, mortality, and drug resistance issues on a global scale.

Methodology: We report a case of a 43-year-old man who was admitted to our hospital for further management of severe coronavirus disease 2019 (COVID-19) pneumonia.

View Article and Find Full Text PDF

Background And Objectives: Gingivitis and periodontitis are common periodontal diseases that can significantly harm overall oral health, affecting the teeth and their supporting tissues, along with the surrounding anatomical structures, and if left untreated, leading to the total destruction of the alveolar bone and the connective tissues, tooth loss, and other more serious systemic health issues. Numerous studies have shown that propolis can help reduce gum inflammation, inhibit the growth of pathogenic bacteria, and promote tissue regeneration, but with varying degrees of success reported. For this reason, this comprehensive systematic review aims at finding out the truth concerning the efficacy of propolis mouthwashes in treating gingivitis and periodontitis, as its main objective.

View Article and Find Full Text PDF

Microbiota and immune dynamics in rheumatoid arthritis: Mechanisms and therapeutic potential.

Best Pract Res Clin Rheumatol

January 2025

Department of Rheumatology and Immunology, Peking University People's Hospital, No. 11, Xizhimen South Street, Xicheng District, Beijing, 100044, China; Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), No. 11, Xizhimen South Street, Xicheng District, Beijing, 100044, China; Division of Rheumatology, Department of Medicine, University of Colorado, No. 11, Xizhimen South Street, Xicheng District, Aurora, CO, 80045, USA. Electronic address:

Rheumatoid arthritis (RA) is a complex autoimmune disease with growing evidence implicating the microbiota as a critical contributor to its pathogenesis. This review explores the multifaceted roles of microbial dysbiosis in RA, emphasizing its impact on immune cell modulation, autoantibody production, gut barrier integrity, and joint inflammation. Animal models reveal how genetic predisposition and environmental factors interact with specific microbial taxa to influence disease susceptibility.

View Article and Find Full Text PDF

Induction of sepsis in a rat model by the cecal ligation and puncture technique. Application for the study of experimental acute renal failure.

Methods Cell Biol

January 2025

Renal Physiopathology Laboratory, Department of Nephrology, Instituto Investigación Sanitaria Gregorio Marañón, Hospital General Universitario Gregorio Marañón, Madrid, Spain; Department of Physiology, School of Medicine, Universidad Complutense, Madrid, Spain. Electronic address:

Sepsis is a systemic inflammatory response to infection, and its occurrence is associated with a poor prognosis in the context of multiorgan dysfunction syndrome (MODS). Although there are several animal models for the study of its etiology, the cecal ligation and puncture (CLP) model has been considered the "Gold standard" because it shows a high degree of similarity to the progression of human sepsis. Currently, it is one of the most frequently chosen options to search for therapeutic alternatives to diminish the progression and organ damage induced by sepsis.

View Article and Find Full Text PDF

Hidradenitis suppurativa is a chronic inflammatory disease characterised by painful, deep-seated nodules, abscesses, and draining tunnels in the skin of axillary, inguinal, genitoanal, or inframammary areas. In recent years, the body of knowledge in hidradenitis suppurativa has advanced greatly. This disorder typically starts in the second or third decade of life.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!