The term hereditary ataxia (HA) refers to a heterogeneous group of neurological disorders with multiple genetic etiologies and a wide spectrum of ataxia-dominated phenotypes. Massive gene analysis in next-generation sequencing has entered the HA scenario, broadening our genetic and clinical knowledge of these conditions. In this study, we employed a targeted resequencing panel (TRP) in a large and highly heterogeneous cohort of 377 patients with a clinical diagnosis of HA, but no molecular diagnosis on routine genetic tests. We obtained a positive result (genetic diagnosis) in 33.2% of the patients, a rate significantly higher than those reported in similar studies employing TRP (average 19.4%), and in line with those performed using exome sequencing (ES, average 34.6%). Moreover, 15.6% of the patients had an uncertain molecular diagnosis. , , and were the most common causative genes. A comparison with published literature data showed that our panel would have identified 97% of the positive cases reported in previous TRP-based studies and 92% of those diagnosed by ES. Proper use of multigene panels, when combined with detailed phenotypic data, seems to be even more efficient than ES in clinical practice.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8395181PMC
http://dx.doi.org/10.3390/ijms22168490DOI Listing

Publication Analysis

Top Keywords

hereditary ataxia
8
molecular diagnosis
8
ngs hereditary
4
ataxia rare
4
rare frequent
4
frequent term
4
term hereditary
4
ataxia refers
4
refers heterogeneous
4
heterogeneous group
4

Similar Publications

Identification of genetic mechanisms of non-isolated auditory neuropathy with various phenotypes in Chinese families.

Orphanet J Rare Dis

January 2025

Senior Department of Otolaryngology Head and Neck Surgery, The 6th Medical Center of Chinese PLA General Hospital, Chinese PLA Medical School, Beijing, 100048, China.

Background: Non-isolated auditory neuropathy (AN), or syndromic AN, is marked by AN along with additional systemic manifestations. The diagnostic process is challenging due to its varied symptoms and overlap with other syndromes. This study focuses on two mitochondrial function-related genes which result in non-isolated AN, FDXR and TWNK, providing a summary and enrichment analysis of genes associated with non-isolated AN to elucidate the genotype-phenotype correlation and underlying mechanisms.

View Article and Find Full Text PDF

Introduction: COQ4 mutation often leads to a fatal multi-system disease in infants. Recently, it was reported that the biallelic COQ4 variants may be a potential cause of hereditary spastic paraplegia (HSP). This study aims to describe the clinical features and genotype of the COQ4 associated hereditary spastic paraplegia (HSP).

View Article and Find Full Text PDF

Mitochondrial dysfunction is implicated in the pathogenesis of the neurological condition autosomal recessive spastic ataxia of Charlevoix-Saguenay (ARSACS), yet precisely how the mitochondrial metabolism is affected is unknown. Thus, to better understand changes in the mitochondrial metabolism caused by loss of the sacsin protein (encoded by the SACS gene, which is mutated in ARSACS), we performed mass spectrometry-based tracer analysis, with both glucose- and glutamine-traced carbon. Comparing the metabolite profiles between wild-type and sacsin-knockout cell lines revealed increased reliance on aerobic glycolysis in sacsin-deficient cells, as evidenced by the increase in lactate and reduction of glucose.

View Article and Find Full Text PDF

Substantia nigra degeneration in spinocerebellar ataxia 2 and 7 using neuromelanin-sensitive imaging.

Eur J Neurol

January 2025

Institut du Cerveau-Paris Brain Institute ICM, Sorbonne Université, Inserm 1127, CNRS 7225, Hôpital de la Pitié Salpêtrière Paris, Paris, France.

Objective: Spinocerebellar ataxias (SCA) are neurodegenerative diseases with widespread lesions across the central nervous system. Ataxia and spasticity are usually predominant, but patients may also present with parkinsonism. We aimed to characterize substantia nigra pars compacta (SNc) degeneration in SCA2 and 7 using neuromelanin-sensitive imaging.

View Article and Find Full Text PDF

Autosomal-recessive spastic ataxia of Charlevoix-Saguenay (ARSACS) is an early-onset neurodegenerative disease caused by mutations in the SACS gene. The first two mutations were identified in French Canadian populations 20 years ago. The disease is now known as one of the most frequent recessive ataxias worldwide.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!