-amino butyric acid (GABA) is marketed in the U.S. as a dietary supplement. USP conducted a comprehensive safety evaluation of GABA by assessing clinical studies, adverse event information, and toxicology data. Clinical studies investigated the effect of pure GABA as a dietary supplement or as a natural constituent of fermented milk or soy matrices. Data showed no serious adverse events associated with GABA at intakes up to 18 g/d for 4 days and in longer studies at intakes of 120 mg/d for 12 weeks. Some studies showed that GABA was associated with a transient and moderate drop in blood pressure (<10% change). No studies were available on effects of GABA during pregnancy and lactation, and no case reports or spontaneous adverse events associated with GABA were found. Chronic administration of GABA to rats and dogs at doses up to 1 g/kg/day showed no signs of toxicity. Because some studies showed that GABA was associated with decreases in blood pressure, it is conceivable that concurrent use of GABA with anti-hypertensive medications could increase risk of hypotension. Caution is advised for pregnant and lactating women since GABA can affect neurotransmitters and the endocrine system, i.e., increases in growth hormone and prolactin levels.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8399837PMC
http://dx.doi.org/10.3390/nu13082742DOI Listing

Publication Analysis

Top Keywords

acid gaba
8
dietary supplement
8
clinical studies
8
gaba
6
united states
4
states pharmacopeia
4
pharmacopeia usp
4
usp safety
4
safety review
4
review -aminobutyric
4

Similar Publications

Background: Long-term use of levodopa, a metabolic precursor of dopamine (DA) for alleviation of motor symptoms in Parkinson's disease (PD), can cause a serious side effect known as levodopa-induced dyskinesia (LID). With the development of LID, high-frequency gamma oscillations (~100 Hz) are registered in the motor cortex (MCx) in patients with PD and rats with experimental PD. Studying alterations in the activity within major components of motor networks during transition from levodopa-off state to dyskinesia can provide useful information about their contribution to the development of abnormal gamma oscillations and LID.

View Article and Find Full Text PDF

Introduction: Anodal transcranial direct current stimulation (tDCS) has been reported to modulate gamma-aminobutyric acid levels and cerebral energy consumption in the brain. This study aims to investigate long-term GABA and cerebral energy modulation following anodal tDCS over the primary motor cortex.

Method: To assess GABA and energy level changes, proton and phosphorus magnetic resonance spectroscopy data were acquired before and after anodal or sham tDCS.

View Article and Find Full Text PDF

Purpose: This study aimed to elucidate the distribution of intracranial gamma-aminobutyric acid (GABA) receptors in patients with infantile epileptic spasms syndrome (IESS) of normal brain MRI findings using I-iomazenil single-photon emission computed tomography (IMZ-SPECT).

Methods: This retrospective study compared IMZ-SPECT images from 20 patients with IESS of unknown etiology with normal brain MRI (unknown IESS group) and 23 patients with developmentally normal epilepsy of the same age (developmentally normal group). A three-dimensional stereotactic region of interest (ROI) template was used to divide the brain into 24 segments (left and right callosomarginal, precentral, central, parietal, angular, temporal, posterior cerebral, pericallosal, lenticular nucleus, thalamus, hippocampus, and cerebellum), and the mean accumulation of I-iomazenil in each ROI was calculated.

View Article and Find Full Text PDF

The Gut-Brain Axis (GBA) is a crucial link between the gut microbiota and the central nervous system. Xenobiotics, originating from diverse sources, play a significant role in shaping this interaction. This review examines how these compounds influence neurotransmitter dynamics within the GBA.

View Article and Find Full Text PDF

Human succinic semialdehyde dehydrogenase is a mitochondrial enzyme fundamental in the neurotransmitter γ-aminobutyric acid catabolism. It catalyzes the NAD-dependent oxidative degradation of its derivative, succinic semialdehyde, to succinic acid. Mutations in its gene lead to an inherited neurometabolic rare disease, succinic semialdehyde dehydrogenase deficiency, characterized by mental and developmental delay.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!