This research assessed a novel treatment process of winery wastewater, through the application of a chemical-based process aiming to decrease the high organic carbon content, which represents a difficulty for wastewater treatment plants and a public health problem. Firstly, a coagulation-flocculation-decantation process (CFD process) was optimized by a simplex lattice design. Afterwards, the efficiency of a UV-C/ferrous iron/ozone system was assessed for organic carbon removal in winery wastewater. This system was applied alone and in combination with the CFD process (as a pre- and post-treatment). The coagulation-flocculation-decantation process, with a mixture of 0.48 g/L potassium caseinate and 0.52 g/L bentonite at pH 4.0, achieved 98.3, 97.6, and 87.8% removals of turbidity, total suspended solids, and total polyphenols, respectively. For the ozonation process, the required pH and ferrous iron concentration (Fe) were crucial variables in treatment optimization. With the application of the best operational conditions (pH = 4.0, [Fe] = 1.0 mM), the UV-C/ferrous iron/ozone system achieved 63.2% total organic carbon (TOC) removal and an energy consumption of 1843 kWh∙m∙order. The combination of CFD and ozonation processes increased the TOC removal to 66.1 and 65.5%, respectively, for the ozone/ferrous iron/UV-C/CFD and CFD/ozone/ferrous iron/UV-C systems. In addition, the germination index of several seeds was assessed and excellent values (>80%) were observed, which revealed the reduction in phytotoxicity. In conclusion, the combination of CFD and UV-C/ferrous iron/ozone processes is efficient for WW treatment.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8395062 | PMC |
http://dx.doi.org/10.3390/ijerph18168882 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!