Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
In this work we analyze the effectiveness of decoration of nanocrystalline SnO/TiO composites with gold nanoparticles (Au NPs) and platinum nanoparticles (Pt NPs) in enhancing gas sensor properties in low-temperature HCHO detection. Nanocrystalline SnO/TiO composites were synthesized by a chemical precipitation method with following modification with Pt and Au NPs by the impregnation method. The nanocomposites were characterized by TEM, XRD, Raman and FTIR spectroscopy, DRIFTS, XPS, TPR-H methods. In HCHO detection, the modification of SnO with TiO leads to a shift in the optimal temperature from 150 to 100 °C. Further modification of SnO/TiO nanocomposites with Au NPs increases the sensor signal at T = 100 °C, while modification with Pt NPs gives rise to the appearance of sensor responses at T = 25 °C and 50 °C. At 200 °C nanocomposites exhibited high selectivity toward formaldehyde within the sub-ppm concentration range among different VOCs. The influence of Pt and Au NPs on surface reactivity of SnO/TiO composite and enhancement of the sensor response toward HCHO was studied by DRIFT spectroscopy and explained by the chemical and electronic sensitization mechanisms.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8398349 | PMC |
http://dx.doi.org/10.3390/nano11082049 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!