In a specific biosensing application, a nanoplasmonic sensor chip has been tested by an experimental setup based on an aluminum holder and two plastic optical fibers used to illuminate and collect the transmitted light. The studied plasmonic probe is based on gold nanograting, realized on the top of a Poly(methyl methacrylate) (PMMA) chip. The PMMA substrate could be considered as a transparent substrate and, in such a way, it has been already used in previous work. Alternatively, here it is regarded as a slab waveguide. In particular, we have deposited upon the slab surface, covered with a nanograting, a synthetic receptor specific for bovine serum albumin (BSA), to test the proposed biosensing approach. Exploiting this different experimental configuration, we have determined how the orientation of the nanostripes forming the grating pattern, with respect to the direction of the input light (longitudinal or orthogonal), influences the biosensing performances. For example, the best limit of detection (LOD) in the BSA detection that has been obtained is equal to 23 pM. Specifically, the longitudinal configuration is characterized by two observable plasmonic phenomena, each sensitive to a different BSA concentration range, ranging from pM to µM. This aspect plays a key role in several biochemical sensing applications, where a wide working range is required.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8399562PMC
http://dx.doi.org/10.3390/nano11081961DOI Listing

Publication Analysis

Top Keywords

biosensing approach
8
nanoplasmonic-based biosensing
4
approach wide-range
4
wide-range highly
4
highly sensitive
4
sensitive detection
4
detection chemicals
4
chemicals specific
4
specific biosensing
4
biosensing application
4

Similar Publications

The oxygenases are essential in the bioremediation of xenobiotic pollutants. To overcome cultivability constraints, this study aims to identify new potential extradiol dioxygenases using the functional metagenomics approach. RW1-4CC, a novel catechol 2,3-dioxygenase, was isolated using functional metagenomics approach, expressed in a heterologous system, and characterized thoroughly using state-of-the-art techniques.

View Article and Find Full Text PDF

Near-infrared DNA-AgNCs enzyme-free fluorescence biosensing for microRNA imaging in living cells based on self-replicating catalytic hairpin self-assembly.

Int J Biol Macromol

January 2025

State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China. Electronic address:

In this work, a fast signal amplification system mediated by self-replicating catalytic hairpin self-assembly (SCHA) was established for microRNA-155 using near-infrared DNA-Ag Nanoclusters (DNA-AgNCs) as fluorescence signal output. Among them, two fission target-like DNA sequences are merged into two hairpin DNA H1 and H2, and the AgNCs template sequence is designed at the sticky end of H1 and H2. The target can be recycled in the system to form a double-stranded DNA structure (H1-H2), which will detach the H1/H2-AgNCs from the surface of the polypyrrole nanoparticles (PPy NPs) and cause the near-infrared fluorescence signal of DNA-AgNCs to be restored.

View Article and Find Full Text PDF

One-step biomineralization to synthesize reusable CRL@ZnCo-MOF for boosting lipase stability and sustainable dibutyl phthalate removal.

Int J Biol Macromol

January 2025

Key Laboratory of Chem-Biosensing of Anhui Province, Key Laboratory of Functional Molecular Solids of Anhui Province, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, Anhui, China. Electronic address:

Adsorption and biodegradation are two important means to remove the pollutants from the environment, but how to combine them and improve the catalytic performance and stability of free enzyme are facing great challenges. Herein, lipase from Candida rugosa (CRL) was immobilized into bimetallic ZnCo-MOF by biomineralization, which not only significantly improved the catalytic activity and stability of CRL but also endowed it with excellent reusability. Furthermore, CRL@ZnCo-MOF established a synergetic system of combined adsorption and enzymatic degradation for the sustainable removal of dibutyl phthalate (DBP) in actual water environment.

View Article and Find Full Text PDF

Typical biosensing platforms are based on the "lock-and-key" approach, providing high specificity and sensitivity for environmental and food safety monitoring. However, they are limited in their ability to detect multiple analytes simultaneously. With the use of pattern identification methods, biosensor arrays can detect faint fluctuations caused by multiple analytes with similar properties in complex systems.

View Article and Find Full Text PDF

Biomolecule-stabilized gold nanoclusters (AuNCs) have become functional nanomaterials of interest because of their unique optical properties, together with excellent biocompatibility and stability under biological conditions. In this review, we explore the recent advancements in the application of biomolecular ligands for synthesizing AuNCs. Various synthesis approaches that are employing amino acids, peptides, proteins, and DNA as biomolecular scaffolds are reviewed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!