A Transformative Gold Patterning through Selective Laser Refining of Cyanide.

Nanomaterials (Basel)

BK21 FOUR ERICA-ACE Center, Department of Mechanical Engineering, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan 15588, Korea.

Published: July 2021

Gold is an essential noble metal for electronics, and its application area is increasing continuously through the introduction of gold nanoparticle ink that enables rapid prototyping and direct writing of gold electrodes on versatile substrates at a low temperature. However, the synthesis of gold nanoparticles has certain limitations involving high cost, long synthesis time, large waste of material, and frequent use of chemicals. In this study, we suggest simultaneous laser refining of gold cyanide and selective fabrication of gold electrodes directly on the substrate without a separate synthesis step. Gold cyanide is commonly the first product of gold from the primitive ore, and the gold can be extracted directly from the rapid photothermal decomposition of gold cyanide by the laser. It was confirmed that laser-induced thermocapillary force plays an important role in creating the continuous gold patterns by aligning the refined gold. The resultant gold electrodes exhibited a low resistivity analogous to the conventional direct writing method using nanoparticles, and the facile repair process of a damaged electrode was demonstrated as the proof-of-concept. The proposed transformative approach for gold patterning, distinguished from the previous top-down and bottom-up approaches, has the potential to replace the well-known techniques and provide a new branch of electrode manufacturing scheme.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8400824PMC
http://dx.doi.org/10.3390/nano11081921DOI Listing

Publication Analysis

Top Keywords

gold
14
gold electrodes
12
gold cyanide
12
gold patterning
8
laser refining
8
direct writing
8
transformative gold
4
patterning selective
4
selective laser
4
cyanide
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!