Microwave-absorbing materials have attracted increased research interest in recent years because of their core roles in the fields of electromagnetic (EM) pollution precaution and information security. In this paper, microwave-absorbing material NiFe-layered double hydroxide (NiFe-LDH) was synthesized by a simple co-precipitation method and calcined for the fabrication of NiFe-mixed metal oxide (NiFe-MMO). The phase structure and micromorphology of the NiFe-LDH and NiFe-MMO were analyzed, and their microwave-absorbing properties were investigated with a vector network analyzer in 2-18 GHz. Both NiFe-LDH and NiFe-MMO possessed abundant interfaces and a low dielectric constant, which were beneficial to electromagnetic wave absorption, owing to the synergistic effect of multi-relaxation and impedance matching. The optimum reflection loss () of NiFe-LDH and NiFe-MMO was -58.8 dB and -64.4 dB, respectively, with the thickness of 4.0 mm in the C band. This work demonstrates that LDH-based materials have a potential application in electromagnetic wave absorption.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8398574 | PMC |
http://dx.doi.org/10.3390/molecules26165046 | DOI Listing |
Molecules
August 2021
Chongqing Key Laboratory of Photoelectronic Information Sensing and Transmitting Technology, School of Optoelectronic Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, China.
Microwave-absorbing materials have attracted increased research interest in recent years because of their core roles in the fields of electromagnetic (EM) pollution precaution and information security. In this paper, microwave-absorbing material NiFe-layered double hydroxide (NiFe-LDH) was synthesized by a simple co-precipitation method and calcined for the fabrication of NiFe-mixed metal oxide (NiFe-MMO). The phase structure and micromorphology of the NiFe-LDH and NiFe-MMO were analyzed, and their microwave-absorbing properties were investigated with a vector network analyzer in 2-18 GHz.
View Article and Find Full Text PDFRSC Adv
February 2019
State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology Beijing 100029 China
Recently, using sunlight as a driving force with transitional metal oxides as photocatalysts, due to their unique optical and catalytic properties for organic reactions, has been considered to be a promising strategy in synthetic chemistry. Here, a hierarchically structured photocatalyst, a NiFe mixed metal oxide coated NbO (denoted as NbO@NiFe-MMO) rod array has been successfully fabricated using Nb foil as a substrate. The NbO rod array was synthesized by the oxidative etching of Nb metal on the surface of the a substrate.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!