Formaldehyde (FA) is a colorless, flammable, foul-smelling chemical used in building materials and in the production of numerous household chemical goods. Herein, a fluorescent chemosensor for FA is designed and prepared using a selective organ-targeting probe containing naphthalimide as a fluorophore and hydrazine as a FA-binding site. The amine group of the hydrazine reacts with FA to form a double bond and this condensation reaction is accompanied by a shift in the absorption band of the probe from 438 nm to 443 nm upon the addition of FA. Further, the addition of FA is shown to enhance the emission band at 532 nm relative to the very weak fluorescent emission of the probe itself. Moreover, a high specificity is demonstrated towards FA over other competing analytes such as the calcium ion (Ca), magnesium ion (Mg), acetaldehyde, benzaldehyde, salicylaldehyde, glucose, glutathione, sodium sulfide (NaS), sodium hydrosulfide (NaHS), hydrogen peroxide (HO), and the -butylhydroperoxide radical. A typical two-photon dye incorporated into the probe provides intense fluorescence upon excitation at 800 nm, thus demonstrating potential application as a two-photon fluorescent probe for FA sensing. Furthermore, the probe is shown to exhibit a fast response time for the sensing of FA at room temperature and to facilitate intense fluorescence imaging of breast cancer cells upon exposure to FA, thus demonstrating its potential application for the monitoring of FA in living cells. Moreover, the presence of the phenylsulfonamide group allows the probe to visualize dynamic changes in the targeted Golgi apparatus. Hence, the as-designed probe is expected to open up new possibilities for unique interactions with organ-specific biological molecules with potential application in early cancer cell diagnosis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8401398 | PMC |
http://dx.doi.org/10.3390/molecules26164980 | DOI Listing |
Phys Rev Lett
December 2024
Department of Electronic Engineering, Tsinghua University, Beijing 100084, China.
Fano resonance is achieved by tuning two coupled oscillators and has exceptional potential for modulating light dispersion. Here, distinct from the classical Fano resonances achieved through photonics methodologies, we introduce the Fano resonance in epsilon-near-zero (ENZ) media with novel electromagnetic properties. By adjusting the background permeability of the ENZ host, the transmission spectrum exhibits various dispersive line shapes and covers the full range of Fano parameter q morphologies, from negative to positive infinity.
View Article and Find Full Text PDFPhys Rev Lett
December 2024
School of Physics, Beihang University, Haidian District, Beijing 100191, China.
Massive Dirac fermions, which are essential for realizing novel topological phenomena, are expected to be generated from massless Dirac fermions by breaking the related symmetry, such as time-reversal symmetry in topological insulators or crystal symmetry in topological crystalline insulators. Here, we report scanning tunneling microscopy and angle-resolved photoemission spectroscopy studies of α-Bi_{4}I_{4}, which reveals the realization of massive Dirac fermions in the (100) surface states without breaking the time-reversal symmetry. Combined with first-principles calculations, our experimental results indicate that the spontaneous symmetry breaking engenders two nondegenerate edge states at the opposite sides of monolayer Bi_{4}I_{4} after the structural phase transition, imparting mass to the Dirac fermions after taking the interlayer coupling into account.
View Article and Find Full Text PDFJMIR Med Inform
January 2025
Sungkyunkwan University, Seoul, Republic of Korea.
Background: Mental health chatbots have emerged as a promising tool for providing accessible and convenient support to individuals in need. Building on our previous research on digital interventions for loneliness and depression among Korean college students, this study addresses the limitations identified and explores more advanced artificial intelligence-driven solutions.
Objective: This study aimed to develop and evaluate the performance of HoMemeTown Dr.
Anal Chem
January 2025
Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, Hunan Provincial University Key Laboratory for Environmental and Ecological Health, College of Chemistry, Xiangtan University, Xiangtan 411105, P.R. China.
The challenge of "false positive" signals significantly complicates tumor localization and surgical resection, which are pivotal for successful tumor surgeries. Therefore, the development of a method for preoperative tumor localization and intraoperative margin determination holds considerable promise for improving surgical outcomes. In this study, a zero-crosstalk ratiometric tumor-targeting near-infrared (NIR) fluorescent probe was developed for precise cancer diagnosis and intraoperative navigation via NIR fluorescence imaging.
View Article and Find Full Text PDFJ Agric Food Chem
January 2025
Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry and State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, P. R. China.
Conjugated linoleic acid (CLA) is known for antiobesity. However, the role of CLA in regulating high-fat diet (HFD)-impaired pubertal mammary gland development remains undefined. Here, pubertal female mice and HC11 cells were treated with HFD or palmitic acid (PA), supplemented with or without CLA, respectively.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!