Hydrogen has been receiving great attention as an energy carrier for potential green energy applications. Hydrogen storage is one of the most crucial factors controlling the hydrogen economy and its future applications. Amongst the several options of hydrogen storage, light metal hydrides, particularly nanocrystalline magnesium hydride (MgH), possess attractive properties, making them desired hydrogen storage materials. The present study aimed to improve the hydrogen storage properties of MgH upon doping with different concentrations of zirconium carbide (ZrC) nanopowders. Both MgH and ZrC were prepared using reactive ball milling and high-energy ball milling techniques, respectively. The as-prepared MgH powder was doped with ZrC (2, 5, and 7 wt%) and then high-energy-ball-milled for 25 h. During the ball milling process, ZrC powders acted as micro-milling media to reduce the MgH particle size to a minimal value that could not be obtained without ZrC. The as-milled nanocomposite MgH/ZrC powders consisted of fine particles (~0.25 μm) with a nanosized grain structure of less than 7 nm. Besides, the ZrC agent led to the lowering of the decomposition temperature of MgH to 287 °C and the reduction in its apparent activation energy of desorption to 69 kJ/mol. Moreover, the hydrogenation/dehydrogenation kinetics of the nanocomposite MgH/ZrC system revealed a significant improvement, as indicated by the low temperature and short time required to achieve successful uptake and release processes. This system possessed a high capability to tackle a long continuous cycle lifetime (1400 h) at low temperatures (225 °C) without showing serious degradation in its storage capacity.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8401397 | PMC |
http://dx.doi.org/10.3390/molecules26164962 | DOI Listing |
J Mol Model
January 2025
Escuela Superior de Física y Matemáticas, IPN S/N, Edificio 9 de la Unidad Profesional "Adolfo López Mateos", Col. Lindavista, Alc. Gustavo A. Madero, 07738, Mexico City, Mexico.
Context: "Nanostructure of graphene-reinforced with polymethyl methacrylate" (PMMA-G), and vice versa, is investigated using its molecular structure, in the present work. The PMMA-G nanostructure was constructed by bonding PMMA with graphene nanosheet in a sense to get three different configurations. Each configuration consisted of polymeric structures with three degrees of polymerization (such as monomers, dimers, and trimers polymers, respectively).
View Article and Find Full Text PDFBiopolymers
March 2025
Centro de Investigación en Química Aplicada, Saltillo, Coahuila, Mexico.
Exploring new ecological and simultaneous processes to modify wood fibers (WF) by-products is a required pathway toward circular economy and sustainability. Thus, plasma-activated water (PAW) and ultrasound (U) were employed as alternative methods to modify WF in a continuous process. Such treatments promoted the etching and cavities on the WF surface that destabilized the hydrogen bonds of the hemicellulose and lignin molecules, increasing the cellulose fraction.
View Article and Find Full Text PDFNat Commun
January 2025
Department of Chemical Engineering, Worcester Polytechnic Institute, Worcester, MA, USA.
The economic feasibility of low-carbon ammonia production pathways, such as steam methane reforming with carbon capture and storage, biomass gasification, and electrolysis, is assessed under various policy frameworks, including subsidies, carbon pricing, and renewable hydrogen regulations. Here, we show that employing a stochastic techno-economic analysis at the plant level and a net present value approach under the US Inflation Reduction Act reveals that carbon capture and biomass pathways demonstrate strong economic potential due to cost-effectiveness and minimal public support needs. Conversely, the electrolytic pathway faces significant economic challenges due to higher costs and lower efficiency.
View Article and Find Full Text PDFFood Chem
January 2025
Departamento de Horticultura, Facultad de Ciencias Agrarias, Universidad de Talca, 2 Norte 685, Talca, Chile.
Hydrogen sulfide (HS), methanethiol (MeSH) and ethanethiol (EtSH) are volatile sulfur compounds (VSCs) produced during winemaking and are associated with negative 'reductive' aromas in wine. Anecdotal evidence suggests that oenological tannins may be used to remediate the 'reductive' character of wines, yet little scientific evidence or explanation supporting this observation has been published. In this study, it was found that the addition of oenological tannins significantly decreased HS, MeSH, and EtSH in model wine by up to 92 %, 90 % and 86 %, respectively, after two weeks of storage.
View Article and Find Full Text PDFACS Appl Energy Mater
January 2025
Advanced Materials Research Group, Faculty of Engineering, University of Nottingham, Nottingham NG7 2RD, United Kingdom.
Magnesium hydride (MgH) is a promising material for solid-state hydrogen storage due to its high gravimetric hydrogen capacity as well as the abundance and low cost of magnesium. The material's limiting factor is the high dehydrogenation temperature (over 300 °C) and sluggish (de)hydrogenation kinetics when no catalyst is present, making it impractical for onboard applications. Catalysts and physical restructuring (e.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!