Antitumor Mechanism of Hydroxycamptothecin via the Metabolic Perturbation of Ribonucleotide and Deoxyribonucleotide in Human Colorectal Carcinoma Cells.

Molecules

State Key Laboratory of Quality Research in Chinese Medicines, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau 999078, China.

Published: August 2021

Hydroxycamptothecin (SN38) is a natural plant extract isolated from . It has a broad spectrum of anticancer activity through inhibition of DNA topoisomerase I, which could affect DNA synthesis and lead to DNA damage. Thus, the action of SN38 against cancers could inevitably affect endogenous levels of ribonucleotide (RNs) and deoxyribonucleotide (dRNs) that play critical roles in many biological processes, especially in DNA synthesis and repair. However, the exact impact of SN38 on RNs and dRNs is yet to be fully elucidated. In this study, we evaluated the anticancer effect and associated mechanism of SN38 in human colorectal carcinoma HCT 116 cells. As a result, SN38 could decrease the cell viability and induce DNA damage in a concentration-dependent manner. Furthermore, cell cycle arrest and intracellular nucleotide metabolism were perturbed due to DNA damage response, of which ATP, UTP, dATP, and TTP may be the critical metabolites during the whole process. Combined with the expression of deoxyribonucleoside triphosphates synthesis enzymes, our results demonstrated that the alteration and imbalance of deoxyribonucleoside triphosphates caused by SN38 was mainly due to the nucleotide synthesis at 24 h, and subsequently the salvage pathways at 48 h. The unique features of SN38 suggested that it might be recommended as an effective supplementary drug with an anticancer effect.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8398164PMC
http://dx.doi.org/10.3390/molecules26164902DOI Listing

Publication Analysis

Top Keywords

dna damage
12
human colorectal
8
colorectal carcinoma
8
dna synthesis
8
deoxyribonucleoside triphosphates
8
sn38
7
dna
6
antitumor mechanism
4
mechanism hydroxycamptothecin
4
hydroxycamptothecin metabolic
4

Similar Publications

Purpose: Prior sperm DNA fragmentation index (DFI) thresholds for diagnosing male infertility and predicting assisted reproduction technology (ART) outcomes fluctuated between 15 and 30%, with no agreed standard. This study aimed to evaluate the impact of the sperm DFI on early embryonic development during ART treatments and establish appropriate DFI cut-off values.

Methods: Retrospectively analyzed 913 couple's ART cycles from 2021 to 2022, encompassing 1,476 IVF and 295 ICSI cycles, following strict criteria.

View Article and Find Full Text PDF

Background: Ovarian cancer (OC), particularly high-grade serous ovarian carcinoma (HGSOC), is the leading cause of mortality from gynecological malignancies worldwide. Despite the initial effectiveness of treatment, acquired resistance to poly(ADP-ribose) polymerase inhibitors (PARPis) represents a major challenge for the clinical management of HGSOC, highlighting the necessity for the development of novel therapeutic strategies. This study investigated the role of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3 (PFKFB3), a pivotal regulator of glycolysis, in PARPi resistance and explored its potential as a therapeutic target to overcome PARPi resistance.

View Article and Find Full Text PDF

The role of Box A of HMGB1 in producing γH2AX associated DNA breaks in lung cancer.

Sci Rep

January 2025

Center of Excellence in Molecular Genetics of Cancer and Human Diseases, Department of Anatomy, Faculty of Medicine, Chulalongkorn University, King Chulalongkorn Memorial Hospital, Bangkok, Thailand.

An ideal chemotherapeutic agent damages DNA, specifically in cancer cells, without harming normal cells. Recently, we used Box A of HMGB1 plasmid as molecular scissors to produce DNA gaps in normal cells. The DNA gap relieves DNA tension and increases DNA strength, preventing DNA double-strand breaks (DSBs).

View Article and Find Full Text PDF

CHD6 has poly(ADP-ribose)- and DNA-binding domains and regulates PARP1/2-trapping inhibitor sensitivity via abasic site repair.

Nat Commun

January 2025

Robson DNA Science Centre, Charbonneau Cancer Institute, Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.

To tolerate oxidative stress, cells enable DNA repair responses often sensitive to poly(ADP-ribose) (PAR) polymerase 1 and 2 (PARP1/2) inhibition-an intervention effective against cancers lacking BRCA1/2. Here, we demonstrate that mutating the CHD6 chromatin remodeler sensitizes cells to PARP1/2 inhibitors in a manner distinct from BRCA1, and that CHD6 recruitment to DNA damage requires cooperation between PAR- and DNA-binding domains essential for nucleosome sliding activity. CHD6 displays direct PAR-binding, interacts with PARP-1 and other PAR-associated proteins, and combined DNA- and PAR-binding loss eliminates CHD6 relocalization to DNA damage.

View Article and Find Full Text PDF

Traumatic brain injury (TBI) is identified as a risk factor for Parkinson's disease (PD), which is a neurodegenerative disease characterized by the loss of dopaminergic neurons in the substantia nigra (SN). However, the precise mechanism by which chronic TBI initiates PD pathogenesis is not yet fully understood. In our present study, we assessed the chronic progression and pathogenesis of PD-like behavior at different intervals in TBI mice.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!