A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Spectroscopic Studies of Quinobenzothiazine Derivative in Terms of the In Vitro Interaction with Selected Human Plasma Proteins. Part 1. | LitMetric

Plasma proteins play a fundamental role in living organisms. They participate in the transport of endogenous and exogenous substances, especially drugs. 5-alkyl-12(H)-quino[3,4-b][1,4]benzothiazinium salts, have been synthesized as potential anticancer substances used for cancer treatment. Most anticancer substances generate a toxic effect on the human body. In order to check the toxicity and therapeutic dosage of these chemicals, the study of ligand binding to plasma proteins is very relevant. The present work presents the first comparative analysis of the binding of one of the 5-alkyl-12(H)-quino[3,4-b][1,4]benzothiazinium derivatives (Salt1) with human serum albumin (HSA), α-1-acid glycoprotein (AGP) and human gamma globulin (HGG), assessed using fluorescence, UV-Vis and CD spectroscopy. In order to mimic in vivo ligand-protein binding, control normal serum (CNS) was used. Based on the obtained data, the Salt1 binding sites in the tertiary structure of all plasma proteins and control normal serum were identified. Both the association constants (K) and the number of binding site classes () were calculated using the Klotz method. The strongest complex formed was Salt1-AGP (K = 7.35·10 and 7.86·10 mol·L at excitation wavelengths λ of 275 and 295 nm, respectively). Lower values were obtained for Salt1-HSA (K = 2.45·10 and 2.71·10 mol·L) and Salt1-HGG (K = 1.41·10 and 1.33·10 mol·L) at excitation wavelengths λ of 275 and 295 nm, respectively, which is a positive phenomenon and contributes to the prolonged action of the drug. Salt1 probably binds to the HSA molecule in Sudlow sites I and II; for the remaining plasma proteins studied, only one binding site was observed. Moreover, using circular dichroism (CD), fluorescence and UV-Vis spectroscopy, no effect on the secondary and tertiary structures of proteins in the absence or presence of Salt1 has been demonstrated. Despite the fact that the conducted studies are basic, from the scientific point of view they are novel and encourage further in vitro and in vivo investigations. As a next part of the study (Part 2), the second new synthetized quinobenzothiazine derivative (Salt2) will be analyzed and published.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8401767PMC
http://dx.doi.org/10.3390/molecules26164776DOI Listing

Publication Analysis

Top Keywords

plasma proteins
20
quinobenzothiazine derivative
8
anticancer substances
8
fluorescence uv-vis
8
uv-vis spectroscopy
8
control normal
8
normal serum
8
binding site
8
mol·l excitation
8
excitation wavelengths
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!