Increased data storage densities are required for the next generation of nonvolatile random access memories and data storage devices based on ferroelectric materials. Yet, with intensified miniaturization, these devices face a loss of their ferroelectric properties. Therefore, a full microscopic understanding of the impact of the nanoscale defects on the ferroelectric switching dynamics is crucial. However, collecting real-time data at the atomic and nanoscale remains very challenging. In this work, we explore the ferroelectric response of a Pb(ZrTi)O thin film ferroelectric capacitor to electrical biasing in situ in the transmission electron microscope. Using a combination of high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) and differential phase contrast (DPC)-STEM imaging we unveil the structural and polarization state of the ferroelectric thin film, integrated into a capacitor architecture, before and during biasing. Thus, we can correlate real-time changes in the DPC signal with the presence of misfit dislocations and ferroelastic domains. A reduction in the domain wall velocity of 24% is measured in defective regions of the film when compared to predominantly defect-free regions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8400982 | PMC |
http://dx.doi.org/10.3390/ma14164749 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!