The use of biological templates for the suitable growth of adipose-derived mesenchymal stem cells (AD-MSC) and "neo-tissue" construction has exponentially increased over the last years. The bioengineered scaffolds still have a prominent and biocompatible framework playing a role in tissue regeneration. In order to supply AD-MSCs, biomaterials, as the stem cell niche, are more often supplemented by or stimulate molecular signals that allow differentiation events into several strains, besides their secretion of cytokines and effects of immunomodulation. This systematic review aims to highlight the details of the integration of several types of biomaterials used in association with AD-MSCs, collecting notorious and basic data of in vitro and in vivo assays, taking into account the relevance of the interference of the cell lineage origin and handling cell line protocols for both the replacement and repairing of damaged tissues or organs in clinical application. Our group analyzed the quality and results of the 98 articles selected from PubMed, Scopus and Web of Science. A total of 97% of the articles retrieved demonstrated the potential in clinical applications. The synthetic polymers were the most used biomaterials associated with AD-MSCs and almost half of the selected articles were applied on bone regeneration.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8400778PMC
http://dx.doi.org/10.3390/ma14164641DOI Listing

Publication Analysis

Top Keywords

adipose-derived mesenchymal
8
mesenchymal stem
8
stem cells
8
systematic review
8
biomaterials
4
biomaterials adipose-derived
4
cells regenerative
4
regenerative medicine
4
medicine systematic
4
review biological
4

Similar Publications

Background: The use of fat grafting has expanded to include cell and tissue regeneration, necessitating investigations to ensure the viability of stromal and adipose-derived mesenchymal stem cells (ASCs) within the transferred fat parcels. This study explored the impact of harvesting technique and centrifugation on the viability of stromal cells and ASCs in lipoaspirate.

Methods: Fat was harvested from patients undergoing fat grafting using 2 types of liposuction cannula: (A) a 3-mm blunt tip cannula with 3 smooth holes and (B) a 2.

View Article and Find Full Text PDF

Chemoresistance in Pancreatic Cancer: The Role of Adipose-Derived Mesenchymal Stem Cells and Key Resistance Genes.

Int J Mol Sci

January 2025

Regenerative Medicine and Cellular Pharmacology Laboratory, Department of Dermatology and Allergology, University of Szeged, H-6720 Szeged, Hungary.

Drug resistance is a significant challenge in pancreatic ductal adenocarcinoma (PDAC), where stromal elements such as adipose-derived mesenchymal stem cells (ASCs) contribute to a chemoresistant tumor microenvironment (TME). This study explored the effects of oxaliplatin (OXP) and 5-fluorouracil (5-FU) on PDAC cells (Capan-1) and ASCs to investigate the mechanisms of chemoresistance. While OXP and 5-FU reduced Capan-1 viability in a dose- and time-dependent manner, ASCs demonstrated high resistance, maintaining > 90% viability even at cytotoxic doses.

View Article and Find Full Text PDF

Metabolic syndrome (MetS) is associated with low-grade inflammation, which can be exacerbated by renal artery stenosis (RAS) and renovascular hypertension, potentially worsening outcomes through pro-inflammatory cytokines. This study investigated whether mesenchymal stem/stromal cells (MSCs) could reduce fat inflammation in pigs with MetS and RAS. Twenty-four pigs were divided into Lean (control), MetS, MetS + RAS, and MetS + RAS + MSCs.

View Article and Find Full Text PDF

This study describes the potential of the conditioned medium (CM) from adipose-derived mesenchymal stromal cells (ASCs) to affect the response of bone cells and support bone remodeling. This was in particular assessed by an in vitro model represented by a 3D human osteoblast-osteoclast co-culture. It has been reported that the effects of ASCs are predominantly attributable to the paracrine effects of their secreted factors, that are present as soluble factors or loaded into extracellular vesicles.

View Article and Find Full Text PDF

Background: The regenerative potential of mesenchymal stromal cells (MSCs) has sparked interest in their use for knee osteoarthritis. Concurrently, there have been investigations on how data in scientific journals are reported and how they may influence readers' interpretations, or "spin bias." These studies are at risk for bias, given the limited number of patients and inconsistent blinding or controls.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!