Li-air batteries possess higher specific energies than the current Li-ion batteries. Major drawbacks of the air cathode include the sluggish kinetics of the oxygen reduction (OER), high overpotentials and pore clogging during discharge processes. Metal-Organic Frameworks (MOFs) appear as promising materials because of their high surface areas, tailorable pore sizes and catalytic centers. In this work, we propose to use, for the first time, aluminum terephthalate (well known as MIL-53) as a flexible air cathode for Li-O batteries. This compound was synthetized through hydrothermal and microwave-assisted routes, leading to different particle sizes with different aspect ratios. The electrochemical properties of both materials seem to be equivalent. Several behaviors are observed depending on the initial value of the first discharge capacity. When the first discharge capacity is higher, no OER occurs, leading to a fast decrease in the capacity during cycling. The nature and the morphology of the discharge products are investigated using ex situ analysis (XRD, SEM and XPS). For both MIL-53 materials, lithium peroxide LiO is found as the main discharge product. A morphological evolution of the LiO particles occurs upon cycling (stacked thin plates, toroids or pseudo-spheres).
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8399480 | PMC |
http://dx.doi.org/10.3390/ma14164618 | DOI Listing |
Molecules
December 2024
Chenjiang Laboratory, School of New Energy, Chenzhou Vocational Technical College, Chenzhou 423000, China.
Sodium-ion batteries (SIBs) hold significant promise in energy storage devices due to their low cost and abundant resources. Layered transition metal oxide cathodes (NaTMO, TM = Ni, Mn, Fe, etc.), owing to their high theoretical capacities and straightforward synthesis procedures, are emerging as the most promising cathode materials for SIBs.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
Arrhenius Laboratory, Department of Materials and Environmental Chemistry, Stockholm University, SE-10691 Stockholm, Sweden.
The phase evolution of Li-rich Li-Mn-Ni-(Al)-O cathode materials upon heat treatments in the air at 900 °C was studied by X-ray and neutron powder diffraction. In addition, the structures of LiMnAl NiO, x = 0.0, 0.
View Article and Find Full Text PDFMed Phys
January 2025
Department of Physics and Atmospheric Science, Dalhousie University, Halifax, Nova Scotia, Canada.
Background: A stemless plastic scintillation detector (SPSD) is composed of an organic plastic scintillator coupled to an organic photodiode. Previous research has shown that SPSDs are ideally suited to challenging dosimetry measurements such as output factors and profiles in small fields. Lacking from the current literature is a systematic effort to optimize the performance of the photodiode component of the detector.
View Article and Find Full Text PDFRev Sci Instrum
January 2025
University of Dayton Research Institute, Dayton, Ohio 45469, USA.
A method to determine electron temperature within a plasma by the spectral analysis of atomic tungsten emission has been explored. The technique was applied to a post-discharge region immediately following a high voltage nanosecond pulsed discharge in air with tungsten electrodes. Atomic tungsten lines are readily observed in the weak emission spectrum within the post-discharge region for many microseconds.
View Article and Find Full Text PDFOper Neurosurg (Hagerstown)
January 2025
Department of Neurosurgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Pudong, Shanghai, China.
Background And Objectives: Deep brain stimulation (DBS) is a well-established intervention for alleviating both motor and nonmotor symptoms of Parkinson disease. However, a common complication of stereotaxic DBS surgery is pneumocephalus, which can compromise electrode accuracy, complicate postoperative assessments, and negatively affect the long-term outcomes of DBS surgery. This report proposes a comprehensive and robust set of recommendations aimed at optimizing DBS surgical protocols to achieve zero pneumocephalus outcomes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!