Integrating Geometric Data into Topology Optimization via Neural Style Transfer.

Materials (Basel)

Department of Mechanical Engineering & Materials Science, University of Pittsburgh, Pittsburgh, PA 15260, USA.

Published: August 2021

This research proposes a novel topology optimization method using neural style transfer to simultaneously optimize both structural performance for a given loading condition and geometric similarity for a reference design. For the neural style transfer, the convolutional layers of a pre-trained neural network extract and quantify characteristic features from the reference and input designs for optimization. The optimization analysis is evaluated as a single weighted objective function with the ability for the user to control the influence of the neural style transfer with the structural performance. As seen in architecture and consumer-facing products, the visual appeal of a design contributes to its overall value along with mechanical performance metrics. Using this method, a designer allows the tool to find the ideal compromise of these metrics. Three case studies are included to demonstrate the capabilities of this method with various loading conditions and reference designs. The structural performances of the novel designs are within 10% of the baseline without geometric reference, and the designs incorporate features in the given reference such as member size or meshed features. The performance of the proposed optimizer is compared against other optimizers without the geometric similarity constraint.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8400862PMC
http://dx.doi.org/10.3390/ma14164551DOI Listing

Publication Analysis

Top Keywords

neural style
16
style transfer
16
topology optimization
8
structural performance
8
geometric similarity
8
features reference
8
reference designs
8
neural
5
reference
5
integrating geometric
4

Similar Publications

Background: Machine learning models can reduce the burden on doctors by converting medical records into International Classification of Diseases (ICD) codes in real time, thereby enhancing the efficiency of diagnosis and treatment. However, it faces challenges such as small datasets, diverse writing styles, unstructured records, and the need for semimanual preprocessing. Existing approaches, such as naive Bayes, Word2Vec, and convolutional neural networks, have limitations in handling missing values and understanding the context of medical texts, leading to a high error rate.

View Article and Find Full Text PDF

Premenstrual syndrome (PMS) encompasses a range of emotional, physiological, and behavioral symptoms that occur during the luteal phase of the menstrual cycle (MC) and resolve with the onset of menstruation. These symptoms, which can include fatigue, physical pain, anxiety, irritability, and depression, significantly affect women's daily lives and overall well-being. In severe cases, PMS can progress to premenstrual dysphoric disorder (PMDD), profoundly impairing quality of life.

View Article and Find Full Text PDF

Background: Up to 13% of adolescents suffer from depressive disorders. Despite the high psychological burden, adolescents rarely decide to contact child and adolescent psychiatric services. To provide a low-barrier alternative, our long-term goal is to develop a chatbot for early identification of depressive symptoms.

View Article and Find Full Text PDF

Objective: To report the development and performance of 2 distinct deep learning models trained exclusively on retinal color fundus photographs to classify Alzheimer disease (AD).

Patients And Methods: Two independent datasets (UK Biobank and our tertiary academic institution) of good-quality retinal photographs derived from patients with AD and controls were used to build 2 deep learning models, between April 1, 2021, and January 30, 2024. ADVAS is a U-Net-based architecture that uses retinal vessel segmentation.

View Article and Find Full Text PDF

Anatomical Landmark detection in CT-Scan images is widely used in the identification of skeletal disorders. However, the traditional process of manually detecting anatomical landmarks, especially in three dimensions, is both time-consuming and prone to human errors. We propose a novel, deep-learning-based approach to automatic detection of 3D landmarks in CT images of the lower limb.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!