In a fast-growing population of the world and regarding meeting consumer's requirements, solid waste landfills will continue receiving a substantial amount of waste. The utilization of solid waste materials in concrete has gained the attention of the researchers. Ceramic waste powder (CWP) is considered to be one of the most harmful wastes for the environment, which may cause water, soil, and air pollution. The aim of this study was comprised of two phases. Phase one was based on the characterization of CWP with respect to its composition, material testing (coarse aggregate, fine aggregate, cement,) and evaluation of concrete properties both in fresh and hardened states (slump, 28 days compressive strength, and dry density). Concrete mixes were prepared in order to evaluate the compressive strength (CS) of the control mix, with partial replacement of the cement with CWP of 10 and 20% by mass of cement and 60 prepared mixes. However, phase two was based on the application of the artificial neural network (ANN) and decision tree (DT) approaches, which were used to predict the CS of concrete. The linear coefficient correlation (R) value from the ANN model indicates better performance of the model. Moreover, the statistical check and k-fold cross validation methods were also applied for the performance confirmation of the model. The mean absolute error (MAE), mean square error (MSE), and root mean square error (RMSE) were evaluated to confirm the model's precision.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8398330PMC
http://dx.doi.org/10.3390/ma14164518DOI Listing

Publication Analysis

Top Keywords

compressive strength
12
artificial neural
8
neural network
8
network ann
8
solid waste
8
phase based
8
square error
8
concrete
5
analyzing compressive
4
strength ceramic
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!