Research Status and Prospect of Additive Manufactured Nickel-Titanium Shape Memory Alloys.

Materials (Basel)

State Key Laboratory of Material Processing and Die & Mold Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.

Published: August 2021

Nickel-titanium alloys have been widely used in biomedical, aerospace and other fields due to their shape memory effect, superelastic effect, as well as biocompatible and elasto-thermal properties. Additive manufacturing (AM) technology can form complex and fine structures, which greatly expands the application range of Ni-Ti alloy. In this study, the development trend of additive manufactured Ni-Ti alloy was analyzed. Subsequently, the most widely used selective laser melting (SLM) process for forming Ni-Ti alloy was summarized. Especially, the relationship between Ni-Ti alloy materials, SLM processing parameters, microstructure and properties of Ni-Ti alloy formed by SLM was revealed. The research status of Ni-Ti alloy formed by wire arc additive manufacturing (WAAM), electron beam melting (EBM), directional energy dedication (DED), selective laser sintering (SLS) and other AM processes was briefly described, and its mechanical properties were emphatically expounded. Finally, several suggestions concerning Ni-Ti alloy material preparation, structure design, forming technology and forming equipment in the future were put forward in order to accelerate the engineering application process of additive manufactured Ni-Ti alloy. This study provides a useful reference for scientific research and engineering application of additive manufactured Ni-Ti alloys.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8401032PMC
http://dx.doi.org/10.3390/ma14164496DOI Listing

Publication Analysis

Top Keywords

ni-ti alloy
32
additive manufactured
16
manufactured ni-ti
12
ni-ti
9
shape memory
8
additive manufacturing
8
alloy
8
alloy study
8
selective laser
8
alloy formed
8

Similar Publications

Background: The fracture of an endodontic instrument within the root canal system can occur during root canal therapy, complicating thorough cleaning and shaping. Consequently, managing the broken fragment becomes crucial.

Methods: Eighty Nickel-titanium (NiTi) #20 K-files (Mani, Tochigi, Japan) were cut 8 mm from the tip, fixed into a corkboard, and classified into five groups (n = 14 each).

View Article and Find Full Text PDF
Article Synopsis
  • The aim of the study was to create a reproducible animal model of tricuspid regurgitation (TR) using a self-expanding nickel-titanium stent.
  • The experiment involved 10 pigs, 7 in the experimental group undergoing TR induction through stent implantation, while 3 served as controls without the stent.
  • Results showed significant changes in cardiac structure and function in the experimental group, indicating successful model establishment with no fatalities, making this approach effective for further research on right ventricular issues.
View Article and Find Full Text PDF

Effect of Energy Density on Mechanical Properties of NiTiCu Shape Memory Alloys Prepared by SLM.

Materials (Basel)

November 2024

Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, School of Optoelectronic Science and Engineering, South China Normal University, Guangzhou 510006, China.

In the Ni-Ti shape memory alloy system, Cu elements are used to replace Ni elements. A NiTiCu alloy with a molar ratio of 45:50:5 was prepared using laser selective melting technology. The density, composition, microstructure, and mechanical properties of the NiTiCu alloy were investigated.

View Article and Find Full Text PDF

Background: Nickel titanium (NiTi) rotary files have drastically altered the treatment protocol in endodontics, allowing for faster and easier preparation and more thorough irrigation of the root canal system. Despite the advantages of the NiTi files, instrument separation still remains a major concern. The aim of this study was to compare the cyclic fatigue resistance of three different single-file NiTi systems after clinical use: WaveOne Gold (WOG, Dentsply Maillefer, Ballaigues, Switzerland), One Curve (OC, Micro Mega, Besancon, France), and Reciproc Blue (RPC Blue, VDW, Munich, Germany).

View Article and Find Full Text PDF
Article Synopsis
  • Initial archwires, specifically Nickel-titanium (Ni-Ti), are essential in orthodontic treatment for resolving crowding and correcting tooth rotations with light forces.
  • The study aimed to compare the effectiveness of Copper Ni-Ti 35°C archwires against conventional Ni-Ti archwires in dental alignment and the maintenance of the mandibular arch form.
  • Results indicated no significant difference between the two types of archwires in resolving crowding or maintaining mandibular arch dimensions, suggesting that Copper Ni-Ti 35°C performs similarly to conventional Ni-Ti.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!