The impact of high-energy milling on glassy arsenic monoselenide g-AsSe is studied with X-ray diffraction applied to diffuse peak-halos proper to intermediate- and extended-range ordering revealed in first and second sharp diffraction peaks (FSDP and SSDP). A straightforward interpretation of this effect is developed within the modified microcrystalline approach, treating "amorphous" halos as a superposition of the broadened Bragg diffraction reflexes from remnants of some inter-planar correlations, supplemented by the Ehrenfest diffraction reflexes from most prominent inter-molecular and inter-atomic correlations belonging to these quasi-crystalline remnants. Under nanomilling, the cage-like AsSe molecules are merely destroyed in g-AsSe, facilitating a more polymerized chain-like network. The effect of nanomilling-driven molecular-to-network reamorphization results in a fragmentation impact on the correlation length of FSDP-responsible entities (due to an increase in the FSDP width and position). A breakdown in intermediate-range ordering is accompanied by changes in extended-range ordering due to the high-angular shift and broadening of the SSDP. A breakdown in the intermediate-range order is revealed in the destruction of most distant inter-atomic correlations, which belong to remnants of some quasi-crystalline planes, whereas the longer correlations dominate in the extended-range order. The microstructure scenarios of milling-driven reamorphization originated from the AsSe molecule, and its network derivatives are identified with an ab initio quantum-chemical cluster modeling code (CINCA).

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8400771PMC
http://dx.doi.org/10.3390/ma14164478DOI Listing

Publication Analysis

Top Keywords

milling-driven reamorphization
8
glassy arsenic
8
arsenic monoselenide
8
extended-range ordering
8
diffraction reflexes
8
inter-atomic correlations
8
breakdown intermediate-range
8
high-energy mechanical
4
mechanical milling-driven
4
reamorphization glassy
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!