This paper investigates the dynamic compressive behavior of wollastonite fiber-reinforced cementitious mortars using multiscale numerical simulations. The rate dependent behavior of the multiphase heterogeneous systems is captured in a multiscale framework that implements continuum damage towards effective property prediction. The influence of wollastonite fiber content (% by mass) as cement replacement on the dynamic compressive strength and energy absorption capacity is thereafter elucidated. An average compressive strength gain of 40% is obtained for mortars with 10% wollastonite fiber content as cement replacement, as compared to the control mortar at a strain rate of 200/s. The rate dependent constitutive responses enable the computation of energy absorption, which serves as a comparative measure for elucidating the material resistance to impact loads. Approximately a 45% increase in the dynamic energy absorption capacity is observed for the mixture containing 10% wollastonite fibers, as compared to the control case. Overall, the study establishes wollastonite fibers as a sustainable and dynamic performance-enhanced alternative for partial cement replacement. Moreover, the multiscale numerical simulation approach for performance prediction can provide an efficient means for the materials designers and engineers to optimize the size and dosage of wollastonite fibers for desired mechanical performance under dynamic loading conditions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8399284 | PMC |
http://dx.doi.org/10.3390/ma14164435 | DOI Listing |
Sci Adv
January 2025
Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, USA.
A recurring challenge in extracting energy from ambient motion is that devices must maintain high harvesting efficiency and a positive user experience when the interface is undergoing dynamic compression. We show that small amphiphiles can be used to tune friction, haptics, and triboelectric properties by assembling into specific conformations on the surfaces of materials. Molecules that form multiple slip planes under pressure, especially through π-π stacking, produce 80 to 90% lower friction than those that form disordered mesostructures.
View Article and Find Full Text PDFJ Phys Condens Matter
January 2025
Department of Physics, The M S University of Baroda, Near Railway station, Sayajigunj, Vadodara, 390002, INDIA.
Controlling vibrational modes and energy gap by creating van der Waals (vdW) heterostructures through strain engineering is a novel approach to tailor the vibrational and electronic properties of two-dimensional (2D) materials. Numerous theoretical and experimental studies have significantly contributed to analysing the properties of transition metal dichalcogenides (TMDs), known for their multifunctional applications. In this study, we investigate the strain and stacking dependent vibrational properties of WSe2/MoSe2 and MoSe2/WSe2/MoSe2 vdW heterostructures using first-principles based density functional theory calculations.
View Article and Find Full Text PDFSci Rep
January 2025
Engineering Research Center of Flexible Radiation Protection Technology, Universities of Shaanxi Province, Xi'an Polytechnic University, Xi'an, 710048, Shaanxi, China.
The impact of light radiation, a predominant energy release mechanism in nuclear explosions, on material properties is of critical importance. This investigation employed an artificial light source to replicate the effects of nuclear explosion radiation and utilized a physical information neural network (PINN) to examine the temperature evolution and corresponding changes in the mechanical properties of carbon fiber/epoxy composites (CFEC). A light source simulating nuclear explosion's light radiation was built to irradiate the CFEC, then measure the reflection spectrum and temperature of samples.
View Article and Find Full Text PDFHeliyon
January 2025
IFP Energies nouvelles, 1 et 4 avenue de Bois Préau, 92852, Rueil-Malmaison, France.
Advanced Adiabatic Compressed Air Energy Storage (AACAES) is a technology for storing energy in thermomechanical form. This technology involves several equipment such as compressors, turbines, heat storage capacities, air coolers, caverns, etc. During charging or discharging, the heat storage and especially the cavern will induce transient behavior of operating points, notably temperature, pressure, and volume flow.
View Article and Find Full Text PDFJ Orthop Case Rep
January 2025
Department of Orthopaedics, Sri Ramachandra Institute of Higher Education and Research, Chennai, Tamil Nadu, India.
Introduction: Giant cell tumour or osteoclastoma is benign, locally aggressive tumor with bone destruction and with malignant potential. It accounts for 5% of all primary bone tumor and occurs in skeletally mature individuals in the age group of 30 to 45 with peak incidence in the 3rd decade. GCT is more common in females.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!