Cellular solid materials are commonly found in industrial applications. By definition, cellular solids are porous materials that are built of distinct cells. One of the groups of such materials contains metal foams. Another group of cellular metals contains bundles of steel bars, which create charges during the heat treatment of the bars. A granular structure connected by the lack of continuity of the solid phase is the main feature that distinguishes bundles from metal foams. The boundaries of the bundle cells are made of adjacent bars, with the internal region taking the form of an air cavity. In this paper, we discuss the possibility of using the Krischer model to determine the effective thermal conductivity of heat-treated bundles of steel bars based on the results of experimental tests and calculations. The model allows the coefficient to be precisely determined, although it requires the weighting parameter to be carefully matched. It is shown that the value of depends on the bar diameter, while its changes within the examined temperature range (25-800 °C) can be described using a third-degree polynomial. Determining the coefficients of such a polynomial is possible only when the effective thermal conductivity of the considered charge is known. Moreover, we analyze a simplified solution, whereby a constant value of the coefficient is used for a given bar diameter; however, the values obtained thanks to this approach are encumbered with inaccuracy amounting to several dozen percentage points. The obtained results lead to the conclusion that the Krischer model cannot be used for the discussed case.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8399876PMC
http://dx.doi.org/10.3390/ma14164378DOI Listing

Publication Analysis

Top Keywords

effective thermal
12
thermal conductivity
12
steel bars
12
krischer model
12
metal foams
8
bundles steel
8
bar diameter
8
bars
5
determination effective
4
thermal
4

Similar Publications

The increasing demand for sustainable food packaging has driven the development of films based on biopolymers. However, enhancing their functional properties remains a challenge. In the current study, potato starch-pectin (PSP) composite films were fabricated and enriched with juniper berry essential oil (JBEO) to improve their physicochemical properties.

View Article and Find Full Text PDF

Pulse approach: a physics-guided machine learning model for thermal analysis in laser-based powder bed fusion of metals.

Prog Addit Manuf

July 2024

Empa Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, 8600 Dübendorf, Switzerland.

Fast and accurate representation of heat transfer in laser powder-bed fusion of metals (PBF-LB/M) is essential for thermo-mechanical analyses. As an example, it benefits the detection of thermal hotspots at the design stage. While traditional physics-based numerical approaches such as the finite element (FE) method are applicable to a wide variety of problems, they are computationally too expensive for PBF-LB/M due to the space- and time-discretization requirements.

View Article and Find Full Text PDF

Unlabelled: The effects of high hydrostatic pressure (HHP) (400-650 MPa) and holding temperature (25-50 °C) in thermally assisted HHP processing on multi-scale structure of starch (granule, crystalline and molecular), techno-functional properties, and digestibility of sorghum starch (SS) were evaluated. Response surface methodology has verified that the process impact on the modification of SS was dependent primarily on the pressure level. As HHP increased, processed SS progressively lost their granular structure and Maltese cross, indicating gradual structural disorder within the granules.

View Article and Find Full Text PDF

As global demand for plant-based foods increases due to their nutritional and environmental benefits, young jackfruit () is emerging as a promising meat alternative. This study evaluates the effects of heat treatments-specifically blanching for 5 min and boiling for 15, 30, and 45 min-on the quality and sensory attributes of jackfruit-based meatballs. The results indicate consistent color values ( , , and ) across the samples, with values ranging from 53.

View Article and Find Full Text PDF

Matrix vesicle-inspired delivery system based on nanofibrous chitosan microspheres for enhanced bone regeneration.

Mater Today Bio

February 2025

State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China.

Inspired by the initial mineralization process with bone matrix vesicles (MVs), this study innovatively developed a delivery system to mediate mineralization during bone regeneration. The system comprises nanofibrous chitosan microspheres (NCM) and poly (allylamine hydrochloride)-stabilized amorphous calcium phosphate (PAH-ACP), which is thereafter referred to as NCMP. NCM is synthesized through the thermal induction of chitosan molecular chains, serving as the carrier, while PAH-ACP functions as the mineralization precursor.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!