Study of Corrosion, Structural, and Mechanical Properties of EN AW-6082 and EN AW-7075 Welded Joints.

Materials (Basel)

Mahle Behr Ostrów Wielkopolski Sp. z o.o., 63-400 Ostrów Wielkopolski, Poland.

Published: August 2021

The purpose of the work was to test the welded joints of aluminum alloys EN AW-7075 and EN AW-6082, which are used to join individual structural elements of car bodies, e.g., B-pillar with the body. The joints were made using the low-energy cold metal transfer (CMT) arc welding method. The results of the structure investigations of lap and butt joints, as well as tests of mechanical properties are presented. The influence of linear energy and the way of arranging materials in lap joints on the possibility of hot cracks occurrence has been demonstrated. The shear strength of lap joints was equal to 150 MPa, while the tensile strength of butt joints was equal to 375 MPa. The highest hardness reduction was observed in the heat affected zone (HAZ) from the EN AW-7075 alloy side in the range of 98 to 138 HV 0.05. In addition, a significant reduction of the corrosion resistance in the transition zone between HAZ and the base material (EN AW-7075 alloy) in the medium salinity environment, corresponding to the sea conditions according to ASTM G85 was indicated.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8398453PMC
http://dx.doi.org/10.3390/ma14164349DOI Listing

Publication Analysis

Top Keywords

mechanical properties
8
welded joints
8
butt joints
8
lap joints
8
joints equal
8
zone haz
8
aw-7075 alloy
8
joints
7
study corrosion
4
corrosion structural
4

Similar Publications

Aerogels hold great potential in thermal insulation, catalytic supports, adsorption, and separation, due to their low density, high porosity, and low thermal conductivity. However, their inherent mechanical fragility and limited control functionality pose substantial challenges that hinder their practical use. In this study, a strategy is developed for the fabrication of cross-linked aramid nanofiber aerogels (cANFAs) by combining internanofiber surface cross-linking with ice-templating techniques.

View Article and Find Full Text PDF

The development of efficient sliding ferroelectric (FE) materials is crucial for advancing next-generation low-power nanodevices. Currently, most efforts focus on homobilayer two-dimensional materials, except for the experimentally reported heterobilayer sliding FE, MoS/WS. Here, we first screened 870 transition metal dichalcogenide (TMD) bilayer heterostructures derived from experimentally characterized monolayer TMDs and systematically investigated their sliding ferroelectric behavior across various stacking configurations using high-throughput calculations.

View Article and Find Full Text PDF

Background: The paratenon has been shown to promote Achilles tendon healing, but the evidence supporting the role of paratenon protection technique in Achilles tendon repair is sparse. We retrospectively assessed the results of a paratenon-sparing repair technique vs an open giftbox repair of Achilles tendon ruptures.

Methods: Patients with Achilles tendon rupture who underwent surgical treatment at our hospital between January 2015 and August 2021 were retrospectively reviewed.

View Article and Find Full Text PDF

In current study, microstructural, mechanical and corrosion behaviour were investigated with incorporation of dual reinforced AZ91D surface composites. This research was carried out for enhancement of the bio-degradability in biological environment. The surface composites were successfully fabricated by friction stir processing method with a rotation speed of 800 rpm, travel speed of 80 mm/min and 2.

View Article and Find Full Text PDF

Measurement and Analysis of Optical Transmission Characteristics of the Human Skull.

J Biophotonics

January 2025

Department of Emergency, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China.

The brain, as a vital part of central nervous system, receives approximately 25% of body's blood supply, making accurate monitoring of cerebral blood flow essential. While fNIRS is widely used for measuring brain physiology, complex tissue structure affects light intensity, spot size, and detection accuracy. Many studies rely on simulations with limited experimental validation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!