SARS-CoV-2 Spike Pseudoviruses: A Useful Tool to Study Virus Entry and Address Emerging Neutralization Escape Phenotypes.

Microorganisms

Department of Infectious Disease Research, Drug Development Division, Southern Research, 431 Aviation Way, Frederick, MD 21701, USA.

Published: August 2021

SARS-CoV-2 genetic variants are emerging around the globe. Unfortunately, several SARS-CoV-2 variants, especially variants of concern (VOCs), are less susceptible to neutralization by the convalescent and post-vaccination sera, raising concerns of increased disease transmissibility and severity. Recent data suggests that SARS-CoV-2 neutralizing antibody levels are a reliable correlate of vaccine-mediated protection. However, currently used BSL3-based virus micro-neutralization (MN) assays are more laborious, time-consuming, and expensive, underscoring the need for BSL2-based, cost-effective neutralization assays against SARS-CoV-2 variants. In light of this unmet need, we have developed a BSL-2 pseudovirus-based neutralization assay (PBNA) in cells expressing the human angiotensin-converting enzyme-2 (hACE2) receptor for SARS-CoV-2. The assay is reproducible (R = 0.96), demonstrates a good dynamic range and high sensitivity. Our data suggest that the biological Anti-SARS-CoV-2 research reagents such as NIBSC 20/130 show lower neutralization against B.1.351 SA (South Africa) and B.1.1.7 UK (United Kingdom) VOC, whereas a commercially available monoclonal antibody MM43 retains activity against both these variants. SARS-CoV-2 spike PBNAs for VOCs would be useful tools to measure the neutralization ability of candidate vaccines in both preclinical models and clinical trials and would further help develop effective prophylactic countermeasures against emerging neutralization escape phenotypes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8398529PMC
http://dx.doi.org/10.3390/microorganisms9081744DOI Listing

Publication Analysis

Top Keywords

sars-cov-2 spike
8
emerging neutralization
8
neutralization escape
8
escape phenotypes
8
sars-cov-2 variants
8
sars-cov-2
7
neutralization
7
variants
5
spike pseudoviruses
4
pseudoviruses tool
4

Similar Publications

Across-the-board review on Omicron SARS-CoV-2 variant.

Inflammopharmacology

December 2024

Department of Pharmacy, Integral University, Lucknow, 226026, India.

Introduction: Coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has resulted in a cataclysmic pandemic. Several SARS-CoV-2 mutations have been found and reported since the COVID-19 pandemic began. After the Alpha, Beta, Gamma, and Delta variants, the Omicron (B.

View Article and Find Full Text PDF

A positive-sense single-stranded RNA virus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), caused the coronavirus disease 2019 (COVID-19) pandemic that devastated the world. While this is a respiratory virus, one feature of the SARS-CoV-2 infection was recognized to cause pathogenesis of other organs. Because the membrane fusion protein of SARS-CoV-2, the spike protein, binds to its major host cell receptor angiotensin-converting enzyme 2 (ACE2) that regulates a critical mediator of cardiovascular diseases, angiotensin II, COVID-19 is largely associated with vascular pathologies.

View Article and Find Full Text PDF

Unlabelled: SARS-CoV-2 mRNA vaccines induce robust and persistent germinal centre (GC) B cell responses in humans. It remains unclear how the continuous evolution of the virus impacts the breadth of the induced GC B cell response. Using ultrasound-guided fine needle aspiration, we examined draining lymph nodes of nine healthy adults following bivalent booster immunization.

View Article and Find Full Text PDF

Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), the virus that caused the Coronavirus Disease 2019 (COVID-19) pandemic, has a spike glycoprotein that is involved in recognizing and fusing to host cell receptors, such as angiotensin-converting enzyme 2 (ACE2), neuropilin-1 (NRP1), and AXL tyrosine-protein kinase. Since the major spike protein receptor is ACE2, an enzyme that regulates angiotensin II (1-8), this study tested the hypothesis that angiotensin II (1-8) influences the binding of the spike protein to its receptors. While angiotensin II (1-8) did not influence spike-ACE2 binding, we found that it significantly enhances spike-AXL binding.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!