Root-knot disease caused by leads to significant crop yield losses that may be aggravated by the association with pathogenic fungi and bacteria. Biological agents can be effectively used against the complex disease of root-knot nematode and pathogenic fungi. In this study, 35 bacterial strains were analyzed for their in vitro nematicidal, antagonistic and growth stimulation activities. Based on results from the in vitro assays, grow-box experiments on tomato and cucumber were carried out with the strain BZR 86 of applied at different concentrations. Effects of BZR 86 on the development of root-knot disease were evaluated by recording root gall index, number of galls and number of eggs in egg masses. Application of BZR 86 noticeably decreased the development of root-knot disease on tomato and cucumber plants, as well as significantly increased growth and biomass of cucumber plants in accordance with bacterial concentration. This study seems to demonstrate that strain BZR 86 could be an additional tool for an environmentally safe control of root-knot disease on horticultural crops.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8402187 | PMC |
http://dx.doi.org/10.3390/microorganisms9081698 | DOI Listing |
Sci Rep
January 2025
Division of Microbiology, Indian Agricultural Research Institute, New Delhi, 110012, India.
Root-knot nematodes (Meloidogyne spp.) are significant pests that cause considerable damage to crops, prompting a need for sustainable control methods. This study evaluated the nematicidal potential of fungal culture filtrates and botanicals as eco-friendly alternatives.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Parasitology, Phramongkutklao College of Medicine, Bangkok, 10400, Thailand.
Meloidogyne enterolobii, a guava root-knot nematode, is a highly virulent pest in tropical and subtropical regions causing galls or knots in roots of diverse plant species posing a serious threat to agriculture. Managing this nematode is challenging due to limitations in conventional identification based on isolation and microscopic classification requiring expertise and time. A colorimetric and fluorescent LAMP assay using simplified extraction method targeting rDNA-ITS region was developed to detect M.
View Article and Find Full Text PDFMol Biol Rep
December 2024
Department of Plant Biotechnology, Centre for Plant Molecular Biology and Biotechnology, (CPMB&B), Tamil Nadu Agricultural University, Coimbatore, 641 037, India.
Background: Tomato (Solanum lycopersicum L.) is a widely cultivated crop in tropical regions, but its production is often hampered by significant losses attributed to diseases like tomato leaf curl virus (ToLCV), fusarium wilt and root-knot nematode.
Methods And Results: This study employed an integrated approach utilizing both co-dominant and dominant SCAR markers, selected for specific resistance genes (ToLCV-Ty-1, Ty-2, Ty-2, Fusarium wilt (Race-2)-I-2, and Root-knot nematode-Mi-1.
Int J Mol Sci
November 2024
Bari Unit, Institute for Sustainable Plant Protection, Department of Biology, Agricultural and Food Sciences, National Research Council of Italy, 70126 Bari, Italy.
The immune response in plants is regulated by several phytohormones and involves the overexpression of defense genes, including the pathogenesis-related () genes. The data reported in this paper indicate that nematodes can suppress the immune response by inhibiting the expression of defense genes. Transcripts from nine defense genes were detected by qRT-PCR in the roots of tomato plants at three and seven days post-inoculation (dpi) with living juveniles (J2s) of (root-knot nematodes, RKNs).
View Article and Find Full Text PDFInt J Mol Sci
November 2024
Facultad de Ciencias Agropecuarias, Universidad de Caldas, Calle 65 No. 26-10, Manizales 170003, Caldas, Colombia.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!