An Outbreak of Highly Pathogenic Avian Influenza (H7N7) in Australia and the Potential for Novel Influenza A Viruses to Emerge.

Microorganisms

School of Nursing, Midwifery, Health Sciences and Physiotherapy, Faculty of Medicine, Nursing and Health Sciences, University of Notre Dame Australia, Fremantle, WA 6160, Australia.

Published: July 2021

In 2020, several geographically isolated farms in Victoria, Australia, experienced an outbreak of highly pathogenic avian influenza (HPAI) virus H7N7 and low pathogenic avian influenza (LPAI) viruses H5N2 and H7N6. Effective containment and control measures ensured the eradication of these viruses but the event culminated in substantial loss of livestock and significant economic impact. The avian HPAI H7N7 virus generally does not infect humans; however, evidence shows the ocular pathway presents a favourable tissue tropism for human infection. Through antigenic drift, mutations in the H7N7 viral genome may increase virulence and pathogenicity in humans. The Victorian outbreak also detected LPAI H7N6 in emus at a commercial farm. Novel influenza A viruses can emerge by mixing different viral strains in a host susceptible to avian and human influenza strains. Studies show that emus are susceptible to infections from a wide range of influenza viral subtypes, including H5N1 and the pandemic H1N1. The emu's internal organs and tissues express abundant cell surface sialic acid receptors that favour the attachment of avian and human influenza viruses, increasing the potential for internal genetic reassortment and the emergence of novel influenza A viruses. This review summarises the historical context of H7N7 in Australia, considers the potential for increased virulence and pathogenesis through mutations and draws attention to the emu as potentially an unrecognised viral mixing vessel.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8401172PMC
http://dx.doi.org/10.3390/microorganisms9081639DOI Listing

Publication Analysis

Top Keywords

influenza viruses
16
pathogenic avian
12
avian influenza
12
novel influenza
12
influenza
9
outbreak highly
8
highly pathogenic
8
h7n7 australia
8
viruses emerge
8
avian human
8

Similar Publications

Respiratory disease (RD) is a worldwide leading threat to the pig industry, but there is still limited understanding of the pathogens associated with swine RD. In this study, we conducted a nationwide genomic surveillance on identifying viruses, bacteria, and antimicrobial resistance genes (ARGs) from the lungs of pigs with RD in China. By performing metatranscriptomic sequencing combined with metagenomic sequencing, we identified 21 viral species belonging to 12 viral families.

View Article and Find Full Text PDF

Major change in swine influenza virus diversity in France owing to emergence and widespread dissemination of a newly introduced H1N2 1C genotype in 2020.

Virus Evol

December 2024

ANSES, Ploufragan-Plouzané-Niort Laboratory, Swine Virology Immunology Unit, National Reference Laboratory for Swine Influenza, BP53, Ploufragan 22440, France.

Swine influenza A viruses (swIAVs) are a major cause of respiratory disease in pigs worldwide, presenting significant economic and health risks. These viruses can reassort, creating new strains with varying pathogenicity and cross-species transmissibility. This study aimed to monitor the genetic and antigenic evolution of swIAV in France from 2019 to 2022.

View Article and Find Full Text PDF

SARS-CoV-2 CoCoPUTs: analyzing GISAID and NCBI data to obtain codon statistics, mutations, and free energy over a multiyear period.

Virus Evol

January 2025

Hemostasis Branch 1, Division of Hemostasis, Office of Plasma Protein Therapeutics CMC, Office of Therapeutic Products, Center for Biologics Evaluation and Research, Food and Drug Administration, 10903 New Hampshire Ave, Silver Spring, MD 20993, USA.

A consistent area of interest since the beginning of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has been the sequence composition of the virus and how it has changed over time. Many resources have been developed for the storage and analysis of SARS-CoV-2 data, such as GISAID (Global Initiative on Sharing All Influenza Data), NCBI, Nextstrain, and outbreak.info.

View Article and Find Full Text PDF

A risk assessment framework was developed to evaluate the zoonotic potential of avian influenza (AI), focusing on virus mutations linked to phenotypic traits related to mammalian adaptation identified in the literature. Virus sequences were screened for the presence of these mutations and their geographical, temporal and subtype-specific trends. Spillover events to mammals (including humans) and human seroprevalence studies were also reviewed.

View Article and Find Full Text PDF

When investigating and controlling outbreaks caused by zoonotic avian influenza viruses (AIV), a One Health approach is key. However, knowledge-sharing on AIV-specific One Health strategies, tools and action plans remains limited across the EU/EEA. It is crucial to establish responsibilities, capacity requirements, and collaboration mechanisms during 'peace time' to enable timely and effective outbreak investigations and management.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!