Coronary artery disease (CAD) is the leading killer of humans worldwide. Bioresorbable polymeric stents have attracted a great deal of interest because they can treat CAD without producing long-term complications. Bioresorbable polymeric stents (BMSs) have undergone a sustainable revolution in terms of material processing, mechanical performance, biodegradability and manufacture techniques. Biodegradable polymers and copolymers have been widely studied as potential material candidates for bioresorbable stents. It is a great challenge to find a reasonable balance between the mechanical properties and degradation behavior of bioresorbable polymeric stents. Surface modification and drug-coating methods are generally used to improve biocompatibility and drug loading performance, which are decisive factors for the safety and efficacy of bioresorbable stents. Traditional stent manufacture techniques include etching, micro-electro discharge machining, electroforming, die-casting and laser cutting. The rapid development of 3D printing has brought continuous innovation and the wide application of biodegradable materials, which provides a novel technique for the additive manufacture of bioresorbable stents. This review aims to describe the problems regarding and the achievements of biodegradable stents from their birth to the present and discuss potential difficulties and challenges in the future.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8398368PMC
http://dx.doi.org/10.3390/mi12080990DOI Listing

Publication Analysis

Top Keywords

manufacture techniques
12
bioresorbable polymeric
12
polymeric stents
12
bioresorbable stents
12
coronary artery
8
stents
8
bioresorbable
7
development design
4
manufacture
4
design manufacture
4

Similar Publications

A novel directly compressible co-processed excipient, based-on rice starch for extended-release of tablets.

Eur J Pharm Biopharm

January 2025

Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; Research Center for Development of Local Lanna Rice and Rice Products, Chiang Mai University, Chiang Mai 50200, Thailand. Electronic address:

The development of a direct compression excipient with extended-release property is crucial for improving tablet manufacturing and drug delivery. This research focuses on developing a novel co-processed excipient composed of rice starch (RS), methylcellulose (MC), and colloidal silicon dioxide (CSD) using a wet granulation technique. The ratios of RS: MC (1.

View Article and Find Full Text PDF

Adaptation of maxillary removable partial denture frameworks fabricated with a direct digital workflow: A randomized crossover clinical trial.

J Dent

January 2025

Department of Prosthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; Shanghai, 200011, China; College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, 200011, China; Department of Stomatology, Fengcheng Hospital of Fengxian District, Shanghai, 201418, China. Electronic address:

Objectives: To compare the adaptation of maxillary removable partial denture (RPD) frameworks fabricated through direct digital workflows with that of traditional cast frameworks and indirect digital frameworks.

Methods: The workflow for fabricating the digital cobalt-chromium framework encompassed intraoral scanning (IOS) using Trios 3, computer-aided survey and design, and subsequently either the lost-wax technique from a printed resin framework pattern (Framework B) or direct selective laser melting (SLM) (Framework C). The traditional cast framework (Framework A) was selected as a control.

View Article and Find Full Text PDF

Poly-N-isopropylacrylamide (PNIPAm), a thermorresponsive polymer, highly soluble in water below its lower critical solution temperature (LCST), is widely used in biomedical applications like drug delivery. Being able to measure PNIPAm size and aggregation state in solution quickly, inexpensively, and accurately below the LCST is critical when stoichiometric particle or molecular ratios are required. Dynamic light scattering (DLS) is probably the most widely available, and inexpensive nanoparticle sizing technique, but there are limitations with respect to sample polydispersity.

View Article and Find Full Text PDF

A semi-automated tool for digital and mechanical articulators comparative analysis of condylar path elements.

Comput Biol Med

January 2025

Department of Management and Engineering, University of Padova, Stradella San Nicola 3, 36100, Vicenza, Italy. Electronic address:

Digital workflows have revolutionized dentistry, especially when it comes to fabrication of complete dentures through Computer-Aided Design and Computer-Aided Manufacturing (CAD-CAM) procedures. Digital articulators manage to simulate mandibular movements and are emerging as alternatives to mechanical articulators like the Gerber semi-adjustable model. Despite being a promising tool, digital articulators require refinement in order to grant consistent functionality and effective occlusal balance.

View Article and Find Full Text PDF

Background/aims: Human mesenchymal stromal cells (hMSC) are multipotent adult cells commonly used in regenerative medicine as advanced therapy medicinal products. The expansion of these cells in xeno-free supplements is highly encouraged by regulatory agencies due to safety concerns. However, the number of supplements with robust performance and consistency for hMSC expansion are limited.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!