Electrostatic voltage is a vital parameter in industrial production lines, for reducing electrostatic discharge harms and improving yields. Due to such drawbacks as package shielding and low resolution, previously reported electric field microsensors are still not applicable for industrial static monitoring uses. In this paper, we introduce a newly designed microsensor package structure, which enhances the field strength inside the package cavity remarkably. This magnification effect was studied and optimized by both theoretical calculation and ANSYS simulation. By means of the digital synthesizer and digital coherent demodulation method, the compact signal processing circuit for the packaged microsensor was also developed. The meter prototype was calibrated above a charged metal plate, and the electric field resolution was 5 V/m, while the measuring error was less than 3 V, from -1 kV to 1 kV in a 2 cm distance. The meter was also installed into a production line and showed good consistency with, and better resolution than, a traditional vibratory capacitance sensor.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8400472 | PMC |
http://dx.doi.org/10.3390/mi12080936 | DOI Listing |
Sci Rep
January 2025
Physics Department, Faculty of Science, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt.
An electro- and optically favorable quaternary nanocomposite film was produced by solution-casting nickel oxide nanoparticles (NiO NPs) into polyvinyl alcohol (PVA), polyvinyl pyrrolidone (PVP), and poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT/PSS). Based on transmission electron microscopy (TEM) and X-ray diffraction (XRD) observations, the synthesized NiO NPs have a cubic phase and a diameter between 10 and 45 nm. The complexity and interactions observed through XRD patterns, UV-visible spectra, and FTIR measurements suggest that the NPs are not just dispersed within the polymer matrix, but are interacting with it, leading to enhanced dielectric properties and AC electrical conductivity.
View Article and Find Full Text PDFISA Trans
December 2024
Electrical Engineering Department, Faculty of Engineering, Minia University, Minia 61111, Egypt. Electronic address:
The paper presents a new sensor-less voltage and frequency control method for a stand-alone doubly-fed induction generator (DFIG) feeding an isolated load. The proposed control approach directly regulates the magnitude and angle of the rotor-flux vector rather than controlling rotor currents or voltages as in classic field oriented control (FOC). To accurately regulate the magnitude and frequency of stator voltage, two separate closed-loop based PI regulators are employed to evaluate the reference signals of the rotor flux vector magnitude and angle, respectively.
View Article and Find Full Text PDFTalanta
December 2024
The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou 510317, China. Electronic address:
Tuberculosis (TB) is the second deadliest infectious disease worldwide. Current TB diagnostics utilize sputum samples, which are difficult to obtain, and sample processing is time-consuming and difficult. This study developed an integrated diagnostic platform for the rapid visual detection of Mycobacterium tuberculosis (Mtb) in breath samples at the point-of-care (POC), especially in resource-limited settings.
View Article and Find Full Text PDFSci Total Environ
January 2025
Graduate School of Agricultural Science, Tohoku University, Sendai, Japan.
An agrivoltaic system (AVS), wherein crops and electricity are simultaneously produced on the same agricultural land, contributes to renewable energy production and food security. AVS is expected to expand energy production in rural areas; however, its energy balance has not been comprehensively investigated. In this study, the energy balance of an AVS established in 2021 in the paddy fields on Shonai Plain was determined.
View Article and Find Full Text PDFBiomater Adv
December 2024
Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Engineering Research Center of Biomedical Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, PR China. Electronic address:
Spinal cord injury (SCI) results in electrophysiological and behavioral dysfunction. Electrical stimulation (ES) is considered to be an effective treatment for mild SCI; however, ES is not applicable to severe SCI due to the disruption of electrical conduction caused by tissue defects. Therefore, the use of conductive materials to fill the defects and restore electrical conduction in the spinal cord is a promising therapeutic strategy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!