Alzheimer's disease (AD) is a neurodegenerative disease that mainly affects older adults. Currently, AD is associated with certain hypometabolic biomarkers, beta-amyloid peptides, hyperphosphorylated tau protein, and changes in brain morphology. Accurate diagnosis of AD, as well as mild cognitive impairment (MCI) (prodromal stage of AD), is essential for early care of the disease. As a result, machine learning techniques have been used in recent years for the diagnosis of AD. In this research, we propose a novel methodology to generate a multivariate model that combines different types of features for the detection of AD. In order to obtain a robust biomarker, ADNI baseline data, clinical and neuropsychological assessments (1024 features) of 106 patients were used. The data were normalized, and a genetic algorithm was implemented for the selection of the most significant features. Subsequently, for the development and validation of the multivariate classification model, a support vector machine model was created, and a five-fold cross-validation with an AUC of 87.63% was used to measure model performance. Lastly, an independent blind test of our final model, using 20 patients not considered during the model construction, yielded an AUC of 100%.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8391811 | PMC |
http://dx.doi.org/10.3390/healthcare9080971 | DOI Listing |
J Cardiothorac Surg
January 2025
Dongying People's Hospital (Dongying Hospital of Shandong Provincial Hospital Group), Dongying, 257091, Shandong, People's Republic of China.
Background: Atherosclerosis (AS) is increasingly recognized as a chronic inflammatory disease that significantly compromises vascular health and acts as a major contributor to cardiovascular diseases. Advancements in lipidomics and metabolomics have unveiled the complex role of fatty acid metabolism (FAM) in both healthy and pathological states. However, the specific roles of fatty acid metabolism-related genes (FAMGs) in shaping therapeutic approaches, especially in AS, remain largely unexplored and are a subject of ongoing research.
View Article and Find Full Text PDFBMC Bioinformatics
January 2025
School of Computing and Artificial Intelligence, Southwest Jiaotong University, Chengdu, 611756, Sichuan, China.
Background: Drug response prediction is critical in precision medicine to determine the most effective and safe treatments for individual patients. Traditional prediction methods relying on demographic and genetic data often fall short in accuracy and robustness. Recent graph-based models, while promising, frequently neglect the critical role of atomic interactions and fail to integrate drug fingerprints with SMILES for comprehensive molecular graph construction.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Endocrinology, Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250001, Shandong, China.
Obesity (OB) and atherosclerosis (AS) represent two highly prevalent and detrimental chronic diseases that are intricately linked. However, the shared genetic signatures and molecular pathways underlying these two conditions remain elusive. This study aimed to identify the shared diagnostic genes and the associated molecular mechanism between OB and AS.
View Article and Find Full Text PDFSci Rep
January 2025
Faculty of Engineering, Helwan University, Cairo, Egypt.
Frequency regulation in isolated microgrids is challenging due to system uncertainties and varying load demands. This study presents an optimal µ-synthesis robust control strategy that regulates microgrid frequency while enhancing system performance and stability-a proposed fixed-structure approach for selecting performance and robustness weights, informed by subsystem frequency analysis. The controller is optimized using multi-objective particle swarm optimization (MOPSO) and multi-objective genetic algorithm (MOGA) under inequality constraints, employing a Pareto front to identify optimal solutions.
View Article and Find Full Text PDFSci Rep
January 2025
University Paris-Saclay, CEA, CNRS, Neurospin, Baobab UMR 9027, Gif-sur-Yvette, 91191, France.
Recent advances highlight the limitations of classification strategies in machine learning that rely on a single data source for understanding, diagnosing and predicting psychiatric syndromes. Moreover, approaches based solely on clinician labels often fail to capture the complexity and variability of these conditions. Recent research underlines the importance of considering multiple dimensions that span across different psychiatric syndromes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!