Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 143
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3098
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Severity: Warning
Message: Attempt to read property "Count" on bool
Filename: helpers/my_audit_helper.php
Line Number: 3100
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3100
Function: _error_handler
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Differential diagnosis of true gallbladder polyps remains a challenging task. This study aimed to differentiate true polyps in ultrasound images using deep learning, especially gallbladder polyps less than 20 mm in size, where clinical distinction is necessary. A total of 501 patients with gallbladder polyp pathology confirmed through cholecystectomy were enrolled from two tertiary hospitals. Abdominal ultrasound images of gallbladder polyps from these patients were analyzed using an ensemble model combining three convolutional neural network (CNN) models and a 5-fold cross-validation. True polyp diagnosis with the ensemble model that learned only using ultrasonography images achieved an area under receiver operating characteristic curve (AUC) of 0.8960 and accuracy of 83.63%. After adding patient age and polyp size information, the diagnostic performance of the ensemble model improved, with a high specificity of 88.35%, AUC of 0.9082, and accuracy of 87.61%, outperforming the individual CNN models constituting the ensemble model. In the subgroup analysis, the ensemble model showed the best performance with AUC of 0.9131 for polyps larger than 10 mm. Our proposed ensemble model that combines three CNN models classifies gallbladder polyps of less than 20 mm in ultrasonography images with high accuracy and can be useful for avoiding unnecessary cholecystectomy with high specificity.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8396835 | PMC |
http://dx.doi.org/10.3390/jcm10163585 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!