(1) Background: Perivascular adipose tissue attenuation, measured with computed tomography imaging, is a marker of mean local vascular inflammation since it reflects the morphological changes of the fat tissue in direct contact with the vessel. This method is thoroughly validated in coronary arteries, but few studies have been performed in other vascular beds. The aim of the present study is to provide insight into the potential application of perivascular adipose tissue attenuation through computed tomography imaging in extra-coronary arteries. (2) Methods: A comprehensive search of the scientific literature published in the last 30 years (1990-2020) has been performed on Medline. (3) Results: A Medline databases search for titles, abstracts, and keywords returned 3251 records. After the exclusion of repetitions and the application of inclusion and exclusion criteria and abstract screening, 37 studies were selected for full-text evaluation. Three papers were finally included in the systematic review. Perivascular adipose tissue attenuation assessment was studied in the internal carotid artery, ascending thoracic aorta, and abdominal aorta. (4) Conclusions: Perivascular adipose tissue attenuation seems to be an applicable parameter in all investigated vascular beds, generally with good inter-observer reproducibility.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8393555PMC
http://dx.doi.org/10.3390/diagnostics11081495DOI Listing

Publication Analysis

Top Keywords

perivascular adipose
20
adipose tissue
20
tissue attenuation
20
computed tomography
12
attenuation computed
8
coronary arteries
8
systematic review
8
tomography imaging
8
vascular beds
8
tissue
6

Similar Publications

Computed tomography coronary angiography provides a non-invasive evaluation of coronary artery disease that includes phenotyping of atherosclerotic plaques and the surrounding perivascular adipose tissue (PVAT). Image analysis techniques have been developed to quantify atherosclerotic plaque burden and morphology as well as the associated PVAT attenuation, and emerging radiomic approaches can add further contextual information. PVAT attenuation might provide a novel measure of vascular health that could be indicative of the pathogenetic processes implicated in atherosclerosis such as inflammation, fibrosis or increased vascularity.

View Article and Find Full Text PDF

Perivascular adipose tissue: a central player in the triad of diabetes, obesity, and cardiovascular health.

Cardiovasc Diabetol

December 2024

Institute of Physiology, iCBR, Faculty of Medicine, University of Coimbra, Subunit 1, polo 3, Azinhaga de Santa Comba, Celas, 3000-548, Coimbra, Portugal.

Perivascular adipose tissue (PVAT) is a dynamic tissue that affects vascular function and cardiovascular health. The connection between PVAT, the immune system, obesity, and vascular disease is complex and plays a pivotal role in the pathogenesis of vascular diseases such as atherosclerosis, hypertension, and vascular inflammation. In cardiometabolic diseases, PVAT becomes a significant source of proflammatory adipokines, leading to increased infiltration of immune cells, in cardiometabolic diseases, PVAT becomes a significant source of proinflammatory adipokines, leading to increased infiltration of immune cells, promoting vascular smooth muscle cell proliferation and migrationpromoting vascular smooth muscle cell proliferation and migration.

View Article and Find Full Text PDF

Renal sinus fat (RSF) crucially influences metabolic regulation, inflammation, and vascular function. We investigated the association between RSF accumulation, metabolic disorders, and nutritional status in obese individuals with hypertension. A cross-sectional study involved 51 obese hypertensive patients from Salamat Specialized Community Clinic (February-September 2022).

View Article and Find Full Text PDF

Comment on: Renal denervation alleviates vascular remodeling in spontaneously hypertensive rats by regulating perivascular adipose tissue.

Hypertens Res

December 2024

Universidad Autónoma de San Luis Potosí, Facultad de Medicina, Av. Venustiano Carranza 2405 Colonia Los Filtros, 78210, San Luis Potosí, S.L.P., México.

View Article and Find Full Text PDF

Salt-sensitive blood pressure is a clinical phenotype defined as exaggerated blood pressure responses to salt loading and salt depletion. This characteristic occurs in 25% of the general population and 50% of patients with hypertension and contributes to the pathogenesis of hypertension in some patients. Hypertension is associated with chronic inflammatory responses and has immune cell accumulation in several hypertensive target organs, including the brain, kidneys, heart, blood vessels, and the perivascular adipose tissue, and these cellular responses likely exacerbate hypertension.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!