A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Testing a Deep Learning Algorithm for Detection of Diabetic Retinopathy in a Spanish Diabetic Population and with MESSIDOR Database. | LitMetric

Background: The aim of the present study was to test our deep learning algorithm (DLA) by reading the retinographies.

Methods: We tested our DLA built on convolutional neural networks in 14,186 retinographies from our population and 1200 images extracted from MESSIDOR. The retinal images were graded both by the DLA and independently by four retina specialists. Results of the DLA were compared according to accuracy (ACC), sensitivity (S), specificity (SP), positive predictive value (PPV), negative predictive value (NPV), and area under the receiver operating characteristic curve (AUC), distinguishing between identification of any type of DR (any DR) and referable DR (RDR).

Results: The results of testing the DLA for identifying any DR in our population were: ACC = 99.75, S = 97.92, SP = 99.91, PPV = 98.92, NPV = 99.82, and AUC = 0.983. When detecting RDR, the results were: ACC = 99.66, S = 96.7, SP = 99.92, PPV = 99.07, NPV = 99.71, and AUC = 0.988. The results of testing the DLA for identifying any DR with MESSIDOR were: ACC = 94.79, S = 97.32, SP = 94.57, PPV = 60.93, NPV = 99.75, and AUC = 0.959. When detecting RDR, the results were: ACC = 98.78, S = 94.64, SP = 99.14, PPV = 90.54, NPV = 99.53, and AUC = 0.968.

Conclusions: Our DLA performed well, both in detecting any DR and in classifying those eyes with RDR in a sample of retinographies of type 2 DM patients in our population and the MESSIDOR database.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8394605PMC
http://dx.doi.org/10.3390/diagnostics11081385DOI Listing

Publication Analysis

Top Keywords

deep learning
8
learning algorithm
8
population messidor
8
messidor database
8
testing dla
8
dla identifying
8
detecting rdr
8
rdr acc
8
dla
7
acc
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!