Niemann-Pick type C disease (NPCD) is a lysosomal storage disorder caused by mutations in the gene. The most affected tissues are the central nervous system and liver, and while significant efforts have been made to understand its neurological component, the pathophysiology of the liver damage remains unclear. In this study, hepatocytes derived from wild type and mice were analyzed by mass spectrometry (MS)-based proteomics in conjunction with bioinformatic analysis. We identified 3832 proteins: 416 proteins had a -value smaller than 0.05, of which 37% ( = 155) were considered differentially expressed proteins (DEPs), 149 of them were considered upregulated, and 6 were considered downregulated. We focused the analysis on pathways related to NPC pathogenic mechanisms, finding that the most significant changes in expression levels occur in proteins that function in the pathways of liver damage, lipid metabolism, and inflammation. Moreover, in the group of DEPs, 30% ( = 47) were identified as lysosomal proteins and 7% ( = 10) were identified as mitochondrial proteins. Importantly, we found that lysosomal DEPs, including CTSB/D/Z, LIPA, DPP7 and GLMP, and mitocondrial DEPs, AKR1B10, and VAT1 had been connected with liver fibrosis, damage, and steatosis in previous studies, validiting our dataset. Our study found potential therapeutic targets for the treatment of liver damage in NPCD.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8392304 | PMC |
http://dx.doi.org/10.3390/cells10082159 | DOI Listing |
Animal Model Exp Med
December 2024
GemPharmatech Chengdu Co., Ltd., Chengdu, China.
Background: The emerging incidence of pathogenic liver conditions is turning into a major concern for global health. Induction of pyroptosis in hepatocytes instigates cellular disintegration, which in turn liberates substantial quantities of pro-inflammatory intracellular substances, thereby accelerating the advancement of liver fibrosis. Consequently, directing therapeutic efforts towards inhibiting pyroptosis could potentially serve as an innovative approach in managing inflammation related chronic hepatic disorders.
View Article and Find Full Text PDFAging Cell
December 2024
Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.
Aging is accompanied by multiple molecular changes that contribute to aging associated pathologies, such as accumulation of cellular damage and mitochondrial dysfunction. Tissue metabolism can also change with age, in part, because mitochondria are central to cellular metabolism. Moreover, the cofactor NAD, which is reported to decline across multiple tissues during aging, plays a central role in metabolic pathways such as glycolysis, the tricarboxylic acid cycle, and the oxidative synthesis of nucleotides, amino acids, and lipids.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN, 55455, USA.
Exposure to reactive oxygen species (ROS) can induce DNA-protein crosslinks (DPCs), unusually bulky DNA lesions that block replication and transcription and play a role in aging, cancer, cardiovascular disease, and neurodegenerative disorders. Repair of DPCs depends on the coordinated efforts of proteases and DNA repair enzymes to cleave the protein component of the lesion to smaller DNA-peptide crosslinks which can be processed by tyrosyl-DNA phosphodiesterases 1 and 2, nucleotide excision and homologous recombination repair pathways. DNA-dependent metalloprotease SPRTN plays a role in DPC repair, and SPRTN-deficient mice exhibit an accelerated aging phenotype and develop liver cancer early in life.
View Article and Find Full Text PDFPharmacol Res
December 2024
Department of Dermatology, University Medical Center of the Johannes Gutenberg-University, Langenbeckstrasse 1, 55131 Mainz, Germany; Department of Medicine II, Saarland University Medical Center, Saarland University, Kirrberger Strasse 100, 66123 Saarbrücken, Germany. Electronic address:
Hepatocellular Carcinoma (HCC) is the most common form of primary liver cancer, with cirrhosis being its strongest risk factor. Interestingly, an increasing number of HCC cases is also observed without cirrhosis. We developed an HCC model via intrasplenic injection of highly tumorigenic HCC cells, which, due to cellular tropism, invade the liver and allow for a controllable disease progression.
View Article and Find Full Text PDFRedox Biol
December 2024
Graduate Program in Toxicology, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA. Electronic address:
Alcohol consumption induces hepatocyte damage through complex processes involving oxidative stress and disrupted metabolism. These factors alter proteomic and epigenetic marks, including alcohol-induced protein acetylation, which is a key post-translational modification (PTM) that regulates hepatic metabolism and is associated with the pathogenesis of alcohol-associated liver disease (ALD). Recent evidence suggests lysine acetylation occurs when a proximal cysteine residue is within ∼15 Å of a lysine residue, referred to as a cysteine-lysine (Cys-Lys) pair.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!