Systemic sclerosis (SSc) is an autoimmune connective tissue disease that leads to skin fibrosis. Altered metabolism has recently been described in autoimmune diseases and SSc. Itaconate is a product of the Krebs cycle intermediate -aconitate and is an immunomodulator. This work examines the role of the cell-permeable derivative of itaconate, 4-octyl itaconate (4-OI), in SSc. SSc and healthy dermal fibroblasts were exposed to 4-OI. The levels of collagen Nrf2-target genes and pro-inflammatory cytokines interleukin 6 (IL-6) and monocyte chemotactic protein 1 (MCP-1) were determined. Levels of reactive oxygen species (ROS) as well as the gene expression of collagen and Cellular Communication Network Factor 2 (CCN2) were measured after transforming growth factor beta 1 (TGF-β1) stimulation in the presence or absence of 4-OI. Wild-type or Nrf2-knockout (Nrf2-KO) mouse embryonic fibroblasts (MEFs) were also treated with 4-OI to determine the role of Nrf2 in 4-OI-mediated effects. 4-OI reduced the levels of collagen in SSc dermal fibroblasts. Incubation with 4-OI led to activation of Nrf2 and its target genes heme oxygenase 1 (HO-1) and NAD(P)H quinone oxidoreductase 1 (NQO1). 4-OI activated antioxidant response element (ARE)-dependent gene expression, reduced inflammatory cytokine release and reduced TGF-β1-induced collagen and ROS production in dermal fibroblasts. The effects of 4-OI are dependent on Nrf2. The cell-permeable derivative of itaconate 4-OI is anti-fibrotic through upregulation of Nrf2 and could be a potential therapeutic option in an intractable disease.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8393335PMC
http://dx.doi.org/10.3390/cells10082053DOI Listing

Publication Analysis

Top Keywords

cell-permeable derivative
12
dermal fibroblasts
12
4-oi
9
itaconate 4-octyl
8
4-octyl itaconate
8
systemic sclerosis
8
derivative itaconate
8
itaconate 4-oi
8
levels collagen
8
gene expression
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!