Early Drosophila Oogenesis: A Tale of Centriolar Asymmetry.

Cells

Department of Life Sciences, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy.

Published: August 2021

Among the morphological processes that characterize the early stages of Drosophila oogenesis, the dynamic of the centrioles deserves particular attention. We re-examined the architecture and the distribution of the centrioles within the germarium and early stages of the vitellarium. We found that most of the germ cell centrioles diverge from the canonical model and display notable variations in size. Moreover, duplication events were frequently observed within the germarium in the absence of DNA replication. Finally, we report the presence of an unusually long centriole that is first detected in the cystoblast and is always associated with the developing oocyte. This centriole is directly inherited after the asymmetric division of the germline stem cells and persists during the process of oocyte selection, thus already representing a marker for oocyte identification at the beginning of its formation and during the ensuing developmental stages.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8391878PMC
http://dx.doi.org/10.3390/cells10081997DOI Listing

Publication Analysis

Top Keywords

drosophila oogenesis
8
early stages
8
early drosophila
4
oogenesis tale
4
tale centriolar
4
centriolar asymmetry
4
asymmetry morphological
4
morphological processes
4
processes characterize
4
characterize early
4

Similar Publications

Transcriptional regulation of the piRNA pathway by Ovo in animal ovarian germ cells.

Genes Dev

December 2024

Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge CB2 0RE, United Kingdom

The gene-regulatory mechanisms controlling the expression of the germline PIWI-interacting RNA (piRNA) pathway components within the gonads of metazoan species remain largely unexplored. In contrast to the male germline piRNA pathway, which in mice is known to be activated by the testis-specific transcription factor A-MYB, the nature of the ovary-specific gene-regulatory network driving the female germline piRNA pathway remains a mystery. Here, using as a model, we combined multiple genomics approaches to reveal the transcription factor Ovo as regulator of the germline piRNA pathway in ovarian germ cells.

View Article and Find Full Text PDF

The death and clearance of nurse cells is a consequential milestone in Drosophila melanogaster oogenesis. In preparation for oviposition, the germline-derived nurse cells bequeath to the developing oocyte all their cytoplasmic contents and undergo programmed cell death. The death of the nurse cells is controlled non-autonomously and is precipitated by epithelial follicle cells of somatic origin acquiring a squamous morphology and acidifying the nurse cells externally.

View Article and Find Full Text PDF
Article Synopsis
  • Wolbachia pipientis are bacteria that manipulate the reproduction of their arthropod and nematode hosts to enhance their own transmission, particularly favoring infected females.
  • Research reveals that these bacteria can improve fertility in Drosophila melanogaster females with specific mutations affecting germline stem cell differentiation.
  • Further analysis shows that W. pipientis infection alters the expression of key genetic interactors and impacts genes involved in ubiquitination and histone modification, suggesting these processes play a role in how W. pipientis influences germline stem cell functions.
View Article and Find Full Text PDF
Article Synopsis
  • The microbiome plays a crucial role in host physiology, with well-known effects from bacteria, but less is understood about fungi's contributions.
  • In a study on Hawaiian picture-wing flies, antifungal treatments negatively impacted female reproduction, while antibacterial treatments affected male fecundity differently.
  • Combining both treatments led to significant reductions in reproduction and altered lipid metabolism, indicating the importance of microbial interactions for maintaining gut health and reproductive success.
View Article and Find Full Text PDF

Repurposing of pleiotropic factors during execution of diverse cellular processes has emerged as a regulatory paradigm. Embryonic development in metazoans is controlled by maternal factors deposited in the egg during oogenesis. Here, we explore maternal role(s) of Caspar (Casp), the orthologue of human Fas-associated factor-1 (FAF1) originally implicated in host-defense as a negative regulator of NF-κB signaling.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!