We detail the development of the ancestry informative single nucleotide polymorphisms (SNPs) panel forming part of the VISAGE Basic Tool (BT), which combines 41 appearance predictive SNPs and 112 ancestry predictive SNPs (three SNPs shared between sets) in one massively parallel sequencing (MPS) multiplex, whereas blood-based age analysis using methylation markers is run in a parallel MPS analysis pipeline. The selection of SNPs for the BT ancestry panel focused on established forensic markers that already have a proven track record of good sequencing performance in MPS, and the overall SNP multiplex scale closely matched that of existing forensic MPS assays. SNPs were chosen to differentiate individuals from the five main continental population groups of Africa, Europe, East Asia, America, and Oceania, extended to include differentiation of individuals from South Asia. From analysis of 1000 Genomes and HGDP-CEPH samples from these six population groups, the BT ancestry panel was shown to have no classification error using the Bayes likelihood calculators of the online analysis portal. The differentiation power of the component ancestry SNPs of BT was balanced as far as possible to avoid bias in the estimation of co-ancestry proportions in individuals with admixed backgrounds. The balancing process led to very similar cumulative population-specific divergence values for Africa, Europe, America, and Oceania, with East Asia being slightly below average, and South Asia an outlier from the other groups. Comparisons were made of the African, European, and Native American estimated co-ancestry proportions in the six admixed 1000 Genomes populations, using the BT ancestry panel SNPs and 572,000 Affymetrix Human Origins array SNPs. Very similar co-ancestry proportions were observed down to a minimum value of 10%, below which, low-level co-ancestry was not always reliably detected by BT SNPs. The analysis portal provides a comprehensive population dataset for the BT ancestry panel SNPs, comprising a 520-sample standardised reference dataset; 3445 additional samples from 1000 Genomes, HGDP-CEPH, Simons Foundation and Estonian Biocentre genome diversity projects; and 167 samples of six populations from in-house genotyping of individuals from Middle East, North and East African regions complementing those of the sampling regimes of the other diversity projects.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8391248 | PMC |
http://dx.doi.org/10.3390/genes12081284 | DOI Listing |
Am J Hum Genet
December 2024
Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; The Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA. Electronic address:
In recent years, significant efforts have been made to improve methods for genomic studies of admixed populations using local ancestry inference (LAI). Accurate LAI is crucial to ensure that downstream analyses accurately reflect the genetic ancestry of research participants. Here, we test analytic strategies for LAI to provide guidelines for optimal accuracy, focusing on admixed populations reflective of Latin America's primary continental ancestries-African (AFR), Amerindigenous (AMR), and European (EUR).
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Yale University, New Haven, CT, USA.
Background: Alcohol Use Disorder (AUD) affects over 15 million individuals in the United States, contributing to oxidative stress, neuroinflammation, and elevating the risk of neurodegeneration. Despite this, the connection between AUD and aging conditions, particularly Alzheimer's disease (AD), remains unclear. AD, with a heritability of 60-80%, is genetically linked, necessitating an exploration of the molecular implications of AUD and genetic susceptibility to AD.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Department of Population and Quantitative Health Sciences, Institute for Computational Biology, Case Western Reserve University, Cleveland, OH, USA.
Background: Recent advances in Alzheimer's Disease (AD) research have emphasized the importance of recruiting from diverse populations. Notably, African-descent individuals have an almost doubled risk of developing AD compared to European-descent individuals. Transcriptome-wide association studies (TWAS) have advanced the analysis of non-coding variants by integrating gene expression with GWAS data.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
University of North Texas Health Science Center, Fort Worth, TX, USA.
Background: The long-term goal of Health & Aging Brain Study - Health Disparities (HABS-HD) is to establish population-specific informed precision medicine for novel treatment and prevention strategies as has been done in other fields. Genomic studies are integral to these efforts and contribute vital data regarding genetic ancestry of the HABS-HD participants, as well as whole genome sequence data, genome-wide genotype (Illumina Global Screening array version 3.0) and epigenetic data (Illumina EPIC DNA methylation array).
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Cleveland Institute for Computational Biology, Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, USA.
Background: Despite its high heritability, the genetic mechanisms influencing Alzheimer's Disease (AD), particularly in health disparity populations like African Americans (AA) and Hispanics (HI), are not fully understood. The lack of ancestral diversity in genetic datasets, notably in eQTL studies that associate genetic variation with gene expression, exacerbates these disparities. Our study seeks to address this gap by comparing the AD interactions of racially and ethnically diverse expression Quantitative Trait Loci (eQTL) effects to investigate the genetic influence on AD in underrepresented populations.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!