Otorhinolaryngology is a vast domain that requires the aid of many resources for optimal performance. The medical devices utilized in this branch share common problems, such as the formation of biofilms. These structured communities of microbes encased in a 3D matrix can develop antimicrobial resistance (AMR), thus making it a problem with challenging solutions. Therefore, it is of concern the introduction in the medical practice involving biomaterials for ear, nose and throat (ENT) devices, such as implants for the trachea (stents), ear (cochlear implants), and voice recovery (voice prosthetics). The surface of these materials must be biocompatible and limit the development of biofilm while still promoting regeneration. In this respect, several surface modification techniques and functionalization procedures can be utilized to facilitate the success of the implants and ensure a long time of use. On this note, this review provides information on the intricate underlying mechanisms of biofilm formation, the large specter of implants and prosthetics that are susceptible to microbial colonization and subsequently related infections. Specifically, the discussion is particularized on biofilm development on ENT devices, ways to reduce it, and recent approaches that have emerged in this field.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8394763PMC
http://dx.doi.org/10.3390/biomedicines9081025DOI Listing

Publication Analysis

Top Keywords

biofilm formation
8
ear nose
8
nose throat
8
medical devices
8
ent devices
8
preventing biofilm
4
formation development
4
development ear
4
throat medical
4
devices
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!