5-Fluorouracil (5-FU) is one of several chemotherapeutic agents in clinical use as a standard of care to treat colorectal cancers (CRCs). As an antimetabolite, 5-FU inhibits thymidylate synthase to disrupt the synthesis and repair of DNA and RNA. However, only a small proportion of patients benefit from 5-FU treatment due to the development of drug resistance. This study applied pharmacogenomic analysis using two public resources, the Genomics of Drug Sensitivity in Cancer (GDSC) and the Connectivity Map, to predict agents overcoming 5-FU resistance in CRC cells based on their genetic background or gene expression profile. Based on the genetic status of adenomatous polyposis coli (APC), the most frequent mutated gene found in CRC, we found that combining a MEK inhibitor with 5-FU exhibited synergism effects on CRC cells with APC truncations. While considering the gene expression in 5-FU resistant cells, we demonstrated that targeting ROCK is a potential avenue to restore 5-FU response to resistant cells with wild-type APC background. Our results reveal MEK signaling plays a pivotal role in loss-of-function, APC-mediated 5-FU resistance, and ROCK activation serves as a signature in APC-independent 5-FU resistance. Through the use of these available database resources, we highlight possible approaches to predict potential drugs for combinatorial therapy for patients developing resistance to 5-FU treatment.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8389646 | PMC |
http://dx.doi.org/10.3390/biomedicines9080882 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!