Identification of Potentially Related Genes and Mechanisms Involved in Skeletal Muscle Atrophy Induced by Excessive Exercise in Zebrafish.

Biology (Basel)

Key Laboratory of Physical Fitness and Exercise Rehabilitation of the Hunan Province, College of Physical Education, Hunan Normal University, Changsha 410012, China.

Published: August 2021

AI Article Synopsis

  • Long-term imbalance between fatigue and recovery can lead to muscle weakness and atrophy, with previous research showing excessive exercise affects heart health.
  • A zebrafish model was developed to study the effects of excessive exercise on skeletal muscle, revealing decreased muscle fiber size and critical swimming speed.
  • RNA-seq analysis identified key genes and pathways associated with skeletal muscle atrophy, suggesting important insights for creating safe exercise programs and for treating exercise-induced muscle issues.

Article Abstract

Long-term imbalance between fatigue and recovery may eventually lead to muscle weakness or even atrophy. We previously reported that excessive exercise induces pathological cardiac hypertrophy. However, the effect of excessive exercise on the skeletal muscles remains unclear. In the present study, we successfully established an excessive-exercise-induced skeletal muscle atrophy zebrafish model, with decreased muscle fiber size, critical swimming speed, and maximal oxygen consumption. High-throughput RNA-seq analysis identified differentially expressed genes in the model system compared with control zebrafish. Gene ontology and KEGG enrichment analysis revealed that the upregulated genes were enriched in autophagy, homeostasis, circadian rhythm, response to oxidative stress, apoptosis, the p53 signaling pathway, and the FoxO signaling pathway. Protein-protein interaction network analysis identified several hub genes, including keap1b, per3, ulk1b, socs2, esrp1, bcl2l1, hsp70, igf2r, mdm2, rab18a, col1a1a, fn1a, ppih, tpx2, uba5, nhlrc2, mcm4, tac1, b3gat3, and ddost, that correlate with the pathogenesis of skeletal muscle atrophy induced by excessive exercise. The underlying regulatory pathways and muscle-pressure-response-related genes identified in the present study will provide valuable insights for prescribing safe and accurate exercise programs for athletes and the supervision and clinical treatment of muscle atrophy induced by excessive exercise.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8389602PMC
http://dx.doi.org/10.3390/biology10080761DOI Listing

Publication Analysis

Top Keywords

excessive exercise
20
muscle atrophy
16
skeletal muscle
12
atrophy induced
12
induced excessive
12
analysis identified
8
signaling pathway
8
muscle
6
exercise
6
atrophy
5

Similar Publications

Over the past 20-30 years, numerous studies have expanded our understanding of the connective components within the human musculoskeletal system. The term "fascia" and, more specifically, the "fascial system" encompass a variety of connective tissues that perform multiple functions. Given the extensive scope of the topic of fascia and the fascial system, which cannot be fully addressed in a single article, this work will focus specifically on the role of fascia in tension transmission (mechanotransduction).

View Article and Find Full Text PDF

Exercise-induced muscle damage (EIMD) is a common occurrence among athletes and individuals engaged in physical fitness activities. Muscle strains result from excessive or repetitive muscle tension, leading to tissue damage, inflammation, and pain. These strains can range from mild discomfort to severe damage, resulting in pain, inflammation, and reduced functionality.

View Article and Find Full Text PDF

China is experiencing a demographic shift as its population ages. The elderly population becomes increasingly susceptible to pneumonia. Pneumonia in the elderly is characterized by its insidious onset, rapid progression, multiple comorbidities, poor prognosis, and high morbidity and mortality.

View Article and Find Full Text PDF

Exercise-driven cellular autophagy: A bridge to systematic wellness.

J Adv Res

January 2025

Department of Rehabilitation, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, PR China; Chongqing Municipality Clinical Research Center for Geriatric Medicine, Chongqing, PR China; Department of Rehabilitation Therapy, Chongqing Medical University, Chongqing, PR China. Electronic address:

Background: Exercise enhances health by supporting homeostasis, bolstering defenses, and aiding disease recovery. It activates autophagy, a conserved cellular process essential for maintaining balance, while dysregulated autophagy contributes to disease progression. Despite extensive research on exercise and autophagy independently, their interplay remains insufficiently understood.

View Article and Find Full Text PDF

Background: There is evidence that exercise may reduce the risk of gestational diabetes mellitus (GDM) and improve other obstetric outcomes in overweight or obese pregnant women. However, the available evidence is of low quality and inconclusive. The purpose of this study is to assess the effects of exercise, compared with usual care, in reducing GDM and other obstetric risks, in overweight and obese pregnant women.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!