Cancer cell culture is routinely performed under superphysiologic O levels and in media such as Dulbecco's Modified Eagle Medium (DMEM) with nutrient composition dissimilar to mammalian extracellular fluid. Recently developed cell culture media (e.g., Plasmax, Human Plasma-Like Medium (HPLM)), which are modeled on the metabolite composition of human blood plasma, have been shown to shift key cellular activities in several cancer cell lines. Similar effects have been reported with respect to O levels in cell culture. Given these observations, we investigated how media composition and O levels affect cellular energy metabolism and mitochondria network structure in MCF7, SaOS2, LNCaP, and Huh7 cells. Cells were cultured in physiologic (5%) or standard (18%) O levels, and in physiologic (Plasmax) or standard cell culture media (DMEM). We show that both O levels and media composition significantly affect mitochondrial abundance and network structure, concomitantly with changes in cellular bioenergetics. Extracellular acidification rate (ECAR), a proxy for glycolytic activity, was generally higher in cells cultured in DMEM while oxygen consumption rates (OCR) were lower. This effect of media on energy metabolism is an important consideration for the study of cancer drugs that target aspects of energy metabolism, including lactate dehydrogenase activity.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8391631 | PMC |
http://dx.doi.org/10.3390/biom11081177 | DOI Listing |
Background: Human pluripotent stem cell (hPSC)-derived brain organoids patterned towards the cerebral cortex are valuable models of interactions occurring in vivo in cortical tissue. We and others have used these cortical organoids to model dominantly inherited FTD-tau. While these studies have provided essential insights, cortical organoid models have yet to reach their full potential.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Icahn School Of Medicine at Mount Sinai, New York, NY, USA.
Background: Despite increasing knowledge of the etiology of neurodegenerative diseases, translation of these benefits into therapeutic advances for Alzheimer's Disease and related diseases (ADRD) has been slow. Drug repurposing is a promising strategy for identifying new uses for approved drugs beyond their initial indications. We developed a high-throughput drug screening platform aimed at identifying drugs capable of reducing proteotoxicity in vivo (Aß toxicity in Caenorhabditis elegans) AND inhibiting microglial inflammation (TNF-alpha IL-6), both implicated in driving AD(figure attached with sample of results in C.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Division of Neurodegenerative Disorders, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB, Canada.
Background: Alzheimer's disease (AD) is a neurodegenerative disorder primarily associated with aging, but manifests as a complex interplay of multiple factors. Decline in sex-hormones, particularly 17-beta estradiol, is linked to the aging process. The risk for onset of AD significantly increases with aging and loss of estradiol.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Department of Neurology, University of Fukui, Matsuoka, Fukui, Japan.
Background: One of the pathological hallmarks in Alzheimer's disease (AD) brain is neurofibrillary tangles (NFTs) composed of highly phosphorylated tau protein. Clinical benefit of traditional Japanese Kampo Yokukansan for dementia patients, including AD was suggested. In this study, we investigated whether yokukansan participates in the degradation of phosphorylated tau and toxic oligomeric species of tau by using cell culture model of tauopathy, M1C cells.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil.
Background: Alzheimer's disease (AD) is a progressive and multifactorial neurodegenerative disease that still has no cure. Different pathological processes contribute to the disease's development, such as the presence of amyloid beta (Aβ) plaques, neurofibrillary tangles (NFTs), glutamatergic excitotoxicity, oxidative stress, and neuroinflammation. Chalcones are polyphenolic compounds of natural origin with a wide range of biological activities, and emerging studies have reported neurotrophic activity, anti-inflammatory and antioxidant effects, and the inhibition of Aβ aggregation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!